To investigate the effect of propofol intra-aortic and intravenous infusion on the concentration of propofol for an ischemia-reperfusion spinal cord injury in rabbits. Methods Forty-six healthy adult New Zealand white rabbits were randomly divided into 3 groups: sal ine infusion group (group N, n=10), propofol intra-aortic infusion group (group A, n=16) and propofol intravenous infusion group (group V, n=16). The infrarenal abdominal aorta was occluded for 30 min during which propofol 50 mg/kg was infused continuously intra-aortic or intravenous with a pump in group A and V. In group N, the same volume of normal sal ine was infused in the same way and at the same rate as in group A. Upon reperfusion, propofol concentration of the spinal segments of L4-6 and T6-8 was examined in group A and V. At 48 hoursafter reperfusion, the neurological outcomes were recorded in each group. Results Mean blood pressure in group V from the time of 5 minutes after occlusion decreased more than in group N (P lt; 0.05) and than in group A from the time of 10 minutes after occlusion(P lt; 0.05). The mean blood pressure in group N increased more than in group A from 15 minutes after occlusion (P lt; 0.05). The heart rate increased more in group V from 10 minutes after occlusion than in group N and A (P lt; 0.05) in which no difference was observed. The propofol concentration in L4-6 of group A (26 950.5 ± 30 242.3) ng/g was higher than that in T6-8 of group A (3 587.4 ± 2 479.3) ng/g and both L4-6 (3 045.9 ± 2 252.9) ng/g and T6-8 (3 181.1 ± 1 720.9) ng/g of group V(P lt; 0.05). The paraplegia incidence was lower (30%) and the median of normal neurons was higher (8.4) in group A than in group N (80%, 2.2) and group V(100%, 1.9), (P lt; 0.05). There was no significant difference in group N and V in paraplegia incidenceand the median of normal neurons (P gt; 0.05). Conclusion Intra-aortic infusion shows a better neurological outcome than intravenous infusion and could contribute to higher concentration of propofol in the ischemia spinal cord.
To investigate the effect of intracellular glycogen on liver ischemia-reperfusion and its mechanism, histomorphological and enzymological changes, histic ATP contents, the activity of Ca2+-ATPase on cytoplasmic membrane and intracellular free Ca2+concentration were observed during the ischemia-reperfusion of three groups of rabbit livers with different glycogen content. We found that the more vigorous energy metabolism, the higher activity of Ca2+-ATPase, the lower concentration of intracellular free Ca2+ and the slighter injury of histic structure and function appeared in the liver with the more abundant glycogen. The results suggest that intracellular abundant glycogen may reduce liver ischemiareperfusion injury.
【Abstract】Objective To observe the synthesis of TLR2 protein and its mRNA expression in Kupffer cells (KCs) and sinusoidal endothelial cells(SECs).Methods Thirty-two BALB/c mice divided into two groups (operation group and false operation group) were used to prepare the model of partial hepatic ischemia/reperfusion (I/R) injury. After injury KCs and SECs were isolated with twosteps situ perfusion technique. And these cells were dyed by rat anti-mouse TLR2 IgG and anti-rat IgG2b labeled with flurescein isothiocyanate (FITC). The sysnthesis of TLR2 protein were determined by flow cytometric (FCM) analysis and real time reverse transcription polymerase chain reaction (Real-Time RT-PCR) analysis for gene expression.Results As for KCs: TLR2 expression was significant higher in operation group, compared with false operation group 〔protein expression: (9.19±1.07)% vs (1.52±0.21)%, P<0.01; gene expression: 0.54±0.77 vs 2.62±2.19, P<0.05〕. But there were no significant differences with expression in SECs. Conclusion Synthesis of TLR2 protein and its gene expression increased in KCs in the mouse partial hepatic ischemia-reperfusion injury.
【Abstract】Objective To study the protective effects of anisodamine on liver ischemia-reperfusion injury in rats. Methods One hundred and sixty male Wistar rats were randomly divided into the normal control (n=10), ischemiareperfusion (n=50), normal saline (n=50) and anisodamine (n=50, 2.0 mg/kg) groups. The animals were killed 1, 3, 6, 12, 24 hours after ischemia induced for 60 minutes and followed by reperfusion. Plasma endothelin-1 (ET-1), hyaluronic acid (HA), glutamic-pyruvic transaminase enzyme (ALT) were measured, and the hepatic histopathologic alterations were also observed. Results The plasma ET-1, HA and ALT concentrations were markedly increased after liver ischemiareperfusion.The hepatic congestion was significantly obvious. An intravenous injection of anisodamine before ischemiareperfusion could decrease the plasma HA and ALT concentrations and relieve the hepatic congestion. Conclusion Anisodamine can improve hepatic microcirculatory disturbances after reperfusion and have hepatoprotictive effects on rat liver ischemia-reperfusion injury.
Objective To investigate the effects of adenosine 2A receptor (A2AR) activation on oxidative stress in small-forsize liver transplantation. Methods A rat orthotopic liver transplantation model was performed using 40% graft, 18 recipients were given intravenously saline (control group), CGS21680 (A2AR agonist, CGS21680 group) or ZM241385 (A2AR antagonist, CGS21680+ZM241385 group) randomly. Aspartate aminotransferase (AST), enzymatic antioxidants 〔superoxide dismutase (SOD); catalase (CAT); glutathione peroxidase (GSH-Px)〕, non-enzymatic antioxidants 〔ascorbic acid (AA); glutathione (GSH); α-tocopherol (TOC)〕 and lipid oxidant metabolites malondialdehyde (MDA) were measured and analyzed at 6 h after reperfusion. Results Compared with the control group and CGS21680+ZM241385 group, A2AR activation increased the activities of SOD and GSHPx (Plt;0.05), reduced the productions of AST and MDA (Plt;0.05), increased the levels of AA, GSH and TOC (Plt;0.05) in CGS21680 group. But there was no significant change in CAT activity (Pgt;0.05) among 3 groups. Conclusions A2AR activation improves the antioxidant enzyme activities, promotes the production of antioxidants, and slowes down the increase in MDA level, depresses of the increase in AST activity. A2AR activation suppresses oxidative damage and increases the antioxidant capacity which in turn minimizes their harmful effects of ischemia-reperfusion in small-for-size liver transplantation.
Objective To observe the protective effects of diazoxide-preconditioning on myocardial ischemiareperfusion injury of rats and discuss its possible mechanisms. Methods Fourteen healthy SD rats were randomly divided into two groups(7 each group),In diazoxide-preconditioning group diazoxide was injected with the dosage of 12.5mg/kg through the vein,and in control group the media with the same amount was only given before ischemia. The left anterior descending branch was ligated for 2 hours. The heart was quickly excised after 2 hours reperfusion to be used for measurement of the quantity of malondialdehyde(MDA), the activity of superoxide dismutase (SOD), the size of myocardial infarct area, and the cell apoptosis and ultrastructure in ischemic area. Results Compared with the control group, the quantity of MDA,the percentage of the weight of myocardial infarct area/ischemic area, and the rate of cell apoptosis in the diazoxide-preconditioning group were greatly reduced (P〈0.05, 0. 01). The damage of cell uhrastructure was obviously alleviated,Conclusion Diazoxide-preconditioning provides evident cardioprotective effect on the myocardial ischemia-reperfusion injury of rats.
Objective To determine whether the different durations and times of the ischemic preconditioning affect the effectiveness of the ischemic preconditioning. Methods Ninety male Wistar rats were randomly divided into the control group and the eight preconditioned groups of 10 rats each. A transverse rectus abdominis musculocutaneous flap (TRAM) was elevated in each rat. The flaps were preconditioned by clamping the pedicle and reperfusing for 5 or 10 minutes per cycle. This was repeated for one or two cycles. The controls were simply perfused for 30 minutes. Each flap was then subjected to 4 hours of the global ischemia. Three rats in each group were killed for anestimate of the water content in the muscle and for observation on the muscularstructure under microscope. The flap surface survival areas of the other rats were calculated on the 7th postoperative day by the computerized video planimetry. Results The water content in the muscle was evidently reduced. The mean survival area of the flap in every preconditioned group increased by2-3 times compared with that of the controls(P<0.001). The different proceduresof the ischemic preconditioning produced different protective effects. Conclusion The ischemic preconditioning is an available means to alleviate an ischemiareperfusion injury to the transverse rectus abdominis musculocutaneous flap in rats. The effect of the ischemic preconditioning is affected by the duration and time of the ischemic preconditioning.
【Abstract】 Objective To study the effects of ischemic preconditioning (IP) on the activity of nuclear factor-κB (NF-κB) and the expressions of TNF-α and intercellular adhesion molecule-1 (ICAM-1) during early reperfusion following liver transplantation in rats. Methods The models of rat orthotopic liver transplantation were established. The donor livers were stored for 2 hours in Ringers solution at 4 ℃ before transplantation. All rats were randomly divided into sham operation group (SO group), control group and IP group. IP group was achieved by clamping the portal vein and hepatic artery of donor liver for 10 minutes followed by reperfusion for 10 minutes before harvesting. The activity of NF-κB and expressions of TNF-α and ICAM-1 at 1 h, 2 h, 4 h and 6 h after reperfusion were measured. Serum ALT, LDH were also determined. Results The liver function of recipients with IP were significantly improved. Compared with SO group, the graft NF-κB activity increased after transplantation in control group and IP group (P<0.05), while compared with control group that was significantly attenuated at 1 h and 2 h in IP group. Similarly, hepatic levels of TNF-α and ICAM-1 were significantly elevated in control group and were reduced in IP group. Conclusion IP might down-regulated TNF-α and ICAM-1 expression in the grafts after orthotopic liver transplantation through depressed NF-κB activation, and attenuate neutrophil infiltration in the grafts after reperfusion.
Objective To review the treatment methods and techniques of ischemia-reperfusion injury of flap. Methods Recent basic research l iterature concerning ischemia-reperfusion injury of flap was reviewed and analyzed in terms of treatment techniques. Results Ischemia-reperfusion injury is one of the leading causes of flap necrosis postoperatively. Interventions against any l ink of the ischemia-reperfusion injury progress could effectively reduce the damageand improve the survival rate of flaps. Conclusion Including production of reactive oxygen species, neutrophil infiltrationetc are thought to be the main mechanisms of ischemia-reperfusion injury. Treatment including medicine administration and physical intervention against any specific l ink of ischemia-reperfusion injury can interfere or block the whole progress, which reduce the damage of ischemia-reperfusion injury and improve the survival rate of animal flap models eventually.
ObjectiveTo review the recent research progress about the pathogenesis and prevention of reactive oxygen species (ROS) in the hepatic ischemia-reperfusion injury (HIRI). MethodsSearched the related literatures in recent years from the databases such as CNKI, PubMed and so on, summarized the recent research progress about the generation mechanism of ROS, the damage mechanism of ROS, and the prevention method of ROS. ResultsA mass of ROS originated from polymorphonuclear leukocytes, Kupffer cells, mitochondria, and the enzymes in hepatic tissue in HIRI. It mainly destroyed sugar molecules of oligosaccharide chains on the cell membrane, unsaturated fatty acid, protein molecules, mitochondrial, and genetic material. This mechanism lead to cell injuried or even death. The main method of prevention and cure to HIRI is eliminating ROS by using enzymes, vitamins, Chinese herbal medicines etc. ConclusionsThe research about ROS in HIRI has advanced. Aiming at the damage resulted from ROS in the liver, Scholars have came up with a variety of control methods which is feasible. However, many issues need to be further investigated.