• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "Decellularized" 15 results
        • HISTOMORPHOLOGICAL AND BIOMECHANICAL CHARACTERISTICS OF DECELLULARIZED BOVINE TENDONS

          Objective To investigate the effect of repeated freezing and thawing combining nuclease treatment on the decellularization of bovine tendons, and the morphology, structure, biochemical compositions, and mechanical properties of the decellularized tendons. Methods A total of 48 fresh 1-day-old bovine Achilles tendons were randomly divided into 3 groups (n=16): fresh normal tendons (group A), repeated freezing and thawing for 5 times (liquid nitrogen refrigeration/37℃ thawing, group B), and repeated freezing and thawing combining nuclease processing for 24 hours (group C). In each group, 2 tendons were used for scanning electron microscope (SEM), 3 tendons for histological and immunohistochemical observations, 3 tendons for DNA content detection, and 8 tendons for biomechanical testing. Results SEM observation indicated the intact, aligned, and densely packed collagen fibers with no disruption in groups A and B, and the slightly loose collagen fibers with little disruption in group C. The alcian blue staining, sirius red staining, and immunohistochemical staining showed that the most of glycosaminoglycan, collagen type I, collagen type III, and fibronectin in group C were retained after decellularization treatment. HE and DAPI staining showed that the cell nuclei between the collagen fibers were clearly visible in groups A and B; however, the cell nuclei between collagen fibers almost were invisible with a few residual nuclei on the endotendineum in group C. DNA quantitative detection confirmed that DNA content in group C [(0.05 ± 0.02) μg/mg] was significantly lower than those in group A [(0.24 ± 0.12) μg/mg] and group B [(0.16 ± 0.07) μg/mg] (P lt; 0.05). Biomechanical testing showed that the values of tensile strength, failure strain, stiffness, and elastic modulus were different among 3 groups, but no significant difference was found (P gt; 0.05). Conclusion Repeated freezing and thawing combining nuclease processing can effectively remove the component of cells, and simultaneously retain the original collagen fibrous structure, morphology, most of the extracellular matrix compositions, and mechanical properties of the bovine tendons.

          Release date:2016-08-31 04:07 Export PDF Favorites Scan
        • PREPARATION AND BIO-EVALUATION OF TISSUE ENGINEERED SCAFFOLD BASED ON DECELLULARIZED WHOLE HEART EXTRACELLULAR MATRIX

          Objective To investigate a method for preparing decellularized rat heart scaffold, and to detect and evaluate the decellularized scaffold. Methods The decellularized rat heart scaffold was prepared by retrograde perfusion with a combination of enzymatic and Triton X-100 detergent methods to remove the populations of resident cells, and then the decellularized scaffold was observed by gross, toluidine blue staining, HE staining, scanning electron microcope (SEM), Alcian blue staining, and immunohistochemisty staining to evaluate the structure and essential component of extracellular maxtix (ECM) in the scaffold. Results Tissue engineered scaffold based on decellularized whole heart ECM was successfully prepared, which maintained not only the gross morphology of the heart, but also the intact vascular structure and ultrastructural conformation that certified by toluidine blue staining, HE staining, and SEM analyses. Alcian blue staining and immunohistochemisty staining showed that the essential components of ECM, such as collagen type I, glycosaminoglycan, fibronectin, and Laminin were remained in decellularized whole heart matrix. Conclusion The decellularized whole heart ECM prepared by method mentioned can maintain the intact structure of rat heart and basic compositions of extracellular matrices, so it could be suitable for further studies of tissue engineered scaffolds for whole heart reconstruction.

          Release date:2016-08-31 04:08 Export PDF Favorites Scan
        • RESEARCH PROGRESS OF DECELLULARIZED MATRIX IN TISSUE ENGINEERED TRACHEA TRANSPLANTATION

          Objective To summarize the recent research situation and progress of decellularized matrix in tissue engineered trachea transplantation and to forecast the possible perspects. Methods Recent original articles about study and application for decellularized matrix in tissue engineered trachea were reviewed. The application and study of different decellularized matrices involved in animals or patients with tracheal lesions were elaborated. Results Decellularized matrices researched and applied in tissue engineered trachea include jejunum, urinary bladder, aorta, and trachea. Conclusion Decellularized urinary bladder matrix and jejunal matrix appears to be efficacious method for the patch repair of partial circumferential tracheal defects. The application of decellularized aortic matrix may need more study, and decellularized tracheal matrix has a bright future in long tracheal defects.

          Release date:2016-08-31 04:06 Export PDF Favorites Scan
        • Decellularized Xenogenic Valve Scaffolds Coated with Biodegradable Polymer for Heart Valve Tissue Engineering

          Objective To study and test novel hybrid valves in vitro and in vivo, and provide basis for clinical use in future. Methods The hybrid valves were fabricated from decellularized porcine aortic valves coated with poly (3-hydroxybutyrate-co-3hydroxyhexanoate, PHBHHx).(1)In the mechanical test in vitro, the uniaxial tensile biomechanics test of the fresh (n=12), uncoated (n=12) and hybrid valve leaflets (n=12) were investigated. (2)In study in vivo, hybrid valves(n=5) implanted in pulmonary position in sheep without cardiopulmonary bypass. Uncoated grafts (n=5) used as control. The specimens of the hybrid or uncoated valve in sheep were explanted and examined by scanning electron microscopy, histology, calcium content and immunofluorescence staining 18 weeks after surgery. Results The mechanical test in vitro revealed that coating with PHBHHx increased maximal tensile strength of hybrid valves compared with the fresh and uncoated state (P<0.05). The results in vivo indicated the hybrid valves maintained original shape and softness. Immunofluorescence staining for CD31 confirmed that the surface of hybrid valve was covered by confluent CD31+ cells.The interstitium of hybrid valve indicated that smooth muscle actin (SMA)+ cells population were similar to native valvular tissue. The calcium content of hybrid valve was significantly lower than that of uncoated valve leaflets (P<0.05). Conclusion Decellularized porcine aortic valves coated with PHBHHx have good biological and biomechanical characteristics. The hybrid valve may provide superior valve replacement with current techniques.

          Release date:2016-08-30 06:09 Export PDF Favorites Scan
        • CycloRGD Peptide Regulates the Expression of Integrin αVβ3 Gene of Myofibroblast on the Decellularized Scaffolds

          Objective To observe whether Cyclo-RGDfK (Arg-Gly-Asp-D-Phe-Lys) could enhance the adhesion of myofibroblast to decellularized scaffolds and upregulate the expression of Integrin αVβ3 gene. Methods Myofibroblast from the rat thoracic aorta was acquired by primary cell culture. The expression of Vimentin and α-smooth muscle actin(α-SMA) has been detected by immunoflurescent labeling. Decellularized valves have been randomly divided into three groups (each n=7). Group A (blank control): valves do not receive any pretreatment; Group B: valves reacted with linking agent NEthylN(3dimethylaminopropyl)carbodiimide hydrochloride (EDC) for 36 hours before being seeded; Experimental group: Cyclo-RGD peptide has been covalently immobilized onto the surface of scaffolds by linking agent EDC. The fifth generation of myofibroblast has been planted on the scaffolds of each group. The adhesion of myofibroblast to the scaffolds was evaluated by HE staining and electron scanning microscope. The expression of Integrin αVβ3 was quantified by halfquantitative reverse transcriptionpolymerase china reaction (RT-PCR). Results We can see that myofibroblast has exhibited b positive staining for Vimentin and α-SMA. Besides, it has been shown that the expression of Integrin αVβ3 was much higher in the experimental group than that of the group A and group B(Plt;0.05). There was no statistically difference in group A and group B (P=0.900). Conclusion RGD pretreatment does enhance the adhesive efficiency of seeding cells to the scaffolds and this effect may be related to the upregulation of Integrin αVβ3.

          Release date:2016-08-30 06:09 Export PDF Favorites Scan
        • EXPERIMENTAL STUDY ON CO-CULTURE OF HUMAN FIBROBLASTS ON DECELLULARIZED Achilles TENDON

          Objective To investigate the preparation of decellularized Achilles tendons and the effect of co-culture of human fibroblasts on the scaffold so as to provide a scaffold for the tissue engineered ligament reconstruction. Methods Achilles tendons of both hind limbs were harvested from 10 male New Zealand white rabbits (5-month-old; weighing, 4-5 kg). The Achilles tendons were decellularized using trypsin, Triton X-100, and sodium dodecyl sulfate (SDS), and then gross observation, histological examination, and scanning electron microscope (SEM) observation were performed; the human fibroblasts were seeded on the decellularized Achilles tendon, and then cytocompatibility was tested using the cell counting kit 8 method at 1, 3, 5, 7, and 9 days after co-culture. At 4 weeks after co-culture, SEM, HE staining, and biomechanical test were performed for observing cell-scaffold composite, and a comparison was made with before and after decellularization. ResultsAfter decellularization, the tendons had integrated aponeurosis and enlarged volume with soft texture and good toughness; there was no loose connective tissue and tendon cells between tendon bundles, the collagen fibers arranged loosely with three-dimensional network structure and more pores between tendon bundles; and it had good cytocompatibility. At 4 weeks after co-culture, cells migrated into the pores, and three-dimensional network structure disappeared. By biomechanical test, the tensile strength and Young’s elastic modulus of the decellularized Achilles tendon group decreased significantly when compared with normal Achilles tendons group and cell-scaffold composite group (P lt; 0.05), but no significant difference was found between normal Achilles tendons group and cell-scaffold composite group (P gt; 0.05). There was no significant difference in elongation at break among 3 groups (P gt; 0.05). ConclusionThe decellularized Achilles tendon is biocompatible to fibroblasts. It is suit for the scaffold for tissue engineered ligament reconstruction.

          Release date:2016-08-31 04:07 Export PDF Favorites Scan
        • APPLICATION AND RESEARCH PROGRESS OF BIO-DERIVED HYDROGELS IN TISSUE ENGINEERING

          ObjectiveTo review the properties of bio-derived hydrogels and their application and research progress in tissue engineering. MethodsThe literature concerning the biol-derived hydrogels was extensively reviewed and analyzed. ResultsBio-derived hydrogels can be divided into single-component hydrogels (collagen,hyaluronic acid,chitosan,alginate,silk fibroin,etc.) and multi-component hydrogels[Matrigel,the extract of extracellular matrix (ECM),and decellularized ECM].They have favorable biocompatibility and bioactivity because they are mostly extracted from the ECM of biological tissue.Among them,hydrogels derived from decellularized ECM,whose composition and structure are more in line with the requirements of bionics,have incomparable advantages and prospects.This kind of scaffold is the closest to the natural environment of the cell growth. ConclusionBio-derived hydrogels have been widely used in tissue engineering research.Although there still exist many problems,such as the poor mechanical properties,rapid degradation,the immunogenicity or safety,vascularization,sterilization methods,and so on,with the deep-going study of optimization mechanism,desirable bio-derived hydrogels could be obtained,and thus be applied to clinical application.

          Release date: Export PDF Favorites Scan
        • EVALUATION OF AN OPTIMIZING PROTOCOL FOR FABRICATING A SCAFFOLD DERIVED FROM PORCINE SKELETAL MUSCLE EXTRACELLULAR MATRIX

          ObjectiveTo explore an optimized protocol of decellularization to fabricate an ideal scaffold derived from porcine skeletal muscle acellular matrix. MethodsSerial-step protocol of homogenating-milling-detergent method was used to fabricate decellularized porcine muscle tissue (DPMT) derived from native porcine skeletal muscle tissue from adult pig waist. Histological method was used to assess the effects of decellularization and degreasing. Sirius red staining was used to analyze collagen components. Scanning electron microscopy, BCA assay, and PicoGreen assay were used to evaluate the ultrastructure, total protein content, and DNA content in DPMT. The adipose derived stem cells (ADSCs), NIH3T3 cells, and human umbilical vein endothelial cells (HUVECs) were cultured in extraction liquor of DPMT in different concentrations for 1, 3, and 5 days, then the relative growth rate was calculated with cell counting kit 8 to assess the toxicity in vitro. Live/dead cell staining was used to evaluate the cytocompatibility by seeding HUVECs on the surface of DPMT and co-cultured in vitro for 3 days. For in vivo test, DPMT was subcutaneously implanted at dorsal site of male specific-pathogen free Sprague Dawley rats and harvested after 3, 7, 14, and 28 days. Gross obersvation was done and transverse diameter of remained DPMT in vivo was determined. HE staining and immunohistochemical staining of CD31 were used to assess inflammatory response and new capillary rings formation. ResultsDecellularization of the porcine skeletal muscle tissue by homogenating-milling-detergent serial steps protocol was effective, time-saving, and simple, which could be finished within only 1 day. The decellularizarion and degreasing effect of DPMT was complete. The main component of DPMT was collagen type I and type IV. The DNA content in DPMT was (15.902±1.392) ng/mg dry weight, the total protein content was 68.94% of DPMT dry weight, which was significantly less than those of fresh skeletal muscle tissue[(140.727±10.422) ng/mg and 93.14%] (P<0.05). The microstructure of DPMT was homogeneous and porous. The result of cytocompatibility revealed that the cytotoxicity of DPMT was 0-1 grade, and HUVECs could stably grow on DPMT. In vivo study revealed DPMT could almost maintain its structural integrity at 14 days and it degraded completely at 28 days after implantation. The inflammatory response peaked at 3 days after implantation, and reduced obviously at 7 days. Difference was significant in the number of inflammatory cells between 2 time points (P<0.05). Neovascularization was observed at 7 days after implantation and the number of new vessels increased at 14 days, showing significant difference between at 7 and 14 days (P<0.05). ConclusionThe homogenating-milling-detergent serial-steps protocol is effective, time-saving, and reproducible. The DPMT reveals to be cell and lipid free, with highly preserved protein component. DPMT has good biocompatibility both in vitro and in vivo and may also have potential in promoting neovascularization.

          Release date:2016-10-21 06:36 Export PDF Favorites Scan
        • ROTATOR CUFF REPAIR WITH DECELLULARIZED TENDON SLICES FOR ENHANCING TENDON-BONE HEALING IN RABBITS

          Objective To investigate the effect of canine decellularized tendon slices (DTSs) on tendon-bone healing in repairing rotator cuff injury of rabbit. Methods Canine DTSs were prepared by repetitive freeze/thaw 5 times combined with nuclease processing for 12 hours from the adult Beagles Achilles tendons. Histological observation and cytocompatibility evaluation for the canine DTSs were performed in vitro. Twenty-four mature male New Zealand white rabbits, weighing 2.5-3.0 kg, were randomly selected. U-shaped defect of more than 50% of normal tendon in width and 8 mm in length was made in infraspinatus tendons of unilateral limb as the experimental group; the canine DTSs were used to repair defect, and the insertion of infraspinatus tendon on greater tuberosity of humerus was reconstructed in the experimental group. No treatment was done on the contralateral limb as the control group. At 4, 8, and 12 weeks after operation, the specimens were harvested for histological observation and biomechanical test. Results Histological examination showed that collagen fibers of canine DTSs were well preserved, without residual cells. The cytocompatibility examination showed that fibroblasts attached well to canine DTSs. Biomechanical test showed that the maximum load and stiffness increased significantly with time, and the maximum load and stiffness at 12 weeks were significantly higher than those at 4 and 8 weeks (P lt; 0.05). The maximum load and stiffness of the experimental group at 4 and 8 weeks were significantly lower than those of the control group (P lt; 0.05). The stiffness of the experimental group at 12 weeks was significantly lower than that of the control group (t= — 5.679, P=0.000), but no significant difference was found in the maximum load at 12 weeks between 2 groups (t=0.969, P=0.361). Histological observation showed that the control group displayed a 4-layer structure of the tendon-bone insertion. In the experimental group at 4 weeks, the tendon-bone interface was filled with granulation tissue, and a small amount of Sharpey’s fibers-like connected the tendon to bone; granulation tissue disappeared, and fibroblasts, Sharpey’s fiber, new cartilage, and chondrocytes significantly increased with time; tendon-bone interface became mature, but the tide line was not observed between the unmineralized fibrocartilage and mineralized fibrocartilage. Conclusion Canine DTSs prepared by repetitive freeze/thaw 5 times combined with nuclease processing for 12 hours, can enhance the healing of host tendon-bone and improve the biomechanical characteristics of the rabbit infraspinatus tendon.

          Release date:2016-08-31 04:12 Export PDF Favorites Scan
        • Experimental Study of Small-caliber Vascular Xenograft for Coronary Artery Bypass Grafting

          Objective To develop a new small-caliber vascular xenograft and evaluate the feasibility of xenogenic artery for coronary artery bypass grafting. Methods Canine carotid arteries were decellularized by detergent and enzymatic extraction. All decellularized xenografts were randomly divided into two groups. Heparin-linked group (n=24): grafts were then covalently linked with heparin. Non-heparin-linked group (n=24): as control. Xenografts in two groups were implanted in rabbits' left and right carotid artery respectively as bypass grafts. Graft patency was checked by ultrasonography after 3 weeks, 3 and 6 months. Grafts were harvested after 3 and 6 months. Microscopic observation and immunohistochemical staining were performed. Results All the cells were removed while the extracellular matrix were well preserved observed. Heparin was successfully linked to the grafts through their whole thickness. There was no obstruction at both sides after implantation of the grafts, while less thrombus was found in the decellularized heparin-linked grafts than in the other side. Smooth muscle cells densely populated the graft wall and endothelial cells covered the lumen at 3 months after implantation. Conclusion Canine common carotid artery treated by detergent and enzymatic extraction and heparin linkage may be a new small-caliber vascular xenograft for coronary artery bypass grafting.

          Release date:2016-08-30 06:23 Export PDF Favorites Scan
        2 pages Previous 1 2 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜