• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "Bone tissue engineering" 38 results
        • STUDIES ON POLY-D, L-LACTIDE ACID SCAFFOLDS MODIFIED BY CONJUGATION OF BIOACTIVE PEPTIDES VIA AMMONIA PLASMA TREATMENT

          Objective To study the feasibil ity of preparation of the poly-D, L-lactide acid (PDLLA) scaffolds treated by ammonia plasma and subsequent conjugation of Gly-Arg-Gly-Asp-Ser (GRGDS) peptides via amide l inkage formation. Methods PDLLA scaffolds (8 mm diameter, 1 mm thickness) were prepared by solvent casting/particulate leaching procedure and then treated by ammonia plasma. The consequent scaffolds were labeled as aminated PDLLA (A/ PDLLA). The pore size, porosity, and surface water contact angle of groups 0 (un-treated control), 5, 10, and 20 minutes A/ PDLLA were measured. A/PDLLA scaffolds in groups above were immersed into the FITC labelled GRGDS aqueous solutionwhich contain 1-[3-(dimethylamino) propyl]-3-ethylcarbodiimide hydrochloride (EDC.HCl) and N-hydroxysuccinimide(NHS), the molar ratio of peptides/EDC.HCL /NHS was 1.5 ∶ 1.5 ∶ 1.0, then brachytely sloshed for 24 hours in roomtemperature. The consequent scaffolds were labelled as peptides conjugated A/PDLLA (PA/PDLLA). The scaffolds in groups 0, 5, 10, and 20 minutes A/PDLLA and groups correspondingly conjugation of peptides were detected using X-ray photoelectron spectroscopy (XPS). The scaffolds in groups of conjugation of peptides were measured by confocal laser scanning microscope and high performance l iquid chromatography (HPLC), un-treated and un-conjugated scaffolds employed as control. Bone marrow mesenchymal stem cells (BMSCs) from SD rats were isolated and cultured by whole bone marrow adherent culture method. BMSCs at the 3rd–6th passages were seeded to the scaffolds as follows: 20 minutes ammonia plasma treatment (group A/PDLLA), 20 minutes ammonia plasma treatment and conjugation of GRGDS (group PA/PDLLA), and untreated PDLLA control (group PDLLA). After 16 hours of culture, the adhesive cells on scaffolds and the adhesive rate were calculated. After 4 and 8 days of culture, the BMSCs/scaffold composites was observed by scanning electron micorscope (SEM). Results No significant difference in pore size and porosity of PDLLA were observed between before and after ammonia plasma treatments (P gt; 0.05). With increased time of ammonia plasma treatment, the water contact angle of A/PDLLA scaffolds surface was decreased, and the hydrophil icity in the treated scaffolds was improved gradually, showing significant differences when these groups were compared with each other (P lt; 0.001). XPS results indicated that element nitrogen appeared on the surface of PDLLA treated by ammonia plasma. With time passing, the peak N1s became more visible, and the ratio of N/C increased more obviously. AfterPDLLA scaffolds treated for 0, 5, 10, and 20 minutes with ammonia plasma and subsequent conjugation of peptides, the ratio of N/C increased and the peak of S2p appeared on the surface. The confocal laser scanning microscope observation showed that the fluorescence intensity of PA/PDLLA scaffolds increased obviously with treatment time. The amount of peptides conjugated for 10 minutes and 20 minutes PA/PDLLA was detected by HPLC successfully, showing significant differences between 10 minutes and 20 minutes groups (P lt; 0.001). However, the amount of peptides conjugated in un-treated control and 0, 5 minutes PA/PDLLA scaffolds was too small to detect. After 16 hours co-culture of BMSCs/scaffolds, the adhesive cells and the adhesive rates of A/PDLLA and PA/PDLLA scaffolds were higher than those of PDLLA scaffolds, showing significant difference between every 2 groups (P lt; 0.01). Also, SEM observation confirmed that BMSCs proliferation in A/PDLLA and PA/PDLLA groups was more detectable than that in PDLLA group, especially in PA/PDLLA group. Conclusion Ammonia plasma treatment will significantly increase the amount of FITC-GRGDS peptides conjugated to surface of PDLLA via amide l inkage formation. This new type of biomimetic bone has stablized bioactivities and has proved to promote the adhesion and proliferation of BMSCs in PDLLA.

          Release date:2016-09-01 09:04 Export PDF Favorites Scan
        • YNERGISTIC EFFECT OF FIBRONECTION AND BASIC FIBROBLAST GROWTH FACTORON OSTEOBLAST ADHESION EFFICIENCY y, Nanjing Jiangsu, 210029, P. R. China.

          Objective To investigate effects of the basic fibroblast growth factor (bFGF) and fibronection (FN) on the osteoblast adhesion on the bio-derived bone. Methods The third generation of the osteoblast was treated with bFGF 0.1, 1, 10, and 100 ng/ml, respectively, and then was seeded in the bioderived bone, which had been modified with FN 0.1, 1, 10, and 100 μg/ml, or Polylysine, respectively. The cell adhesion was measured by the MTT assay. The cell density and the cell appearance were observed by the scanning electron microscope. The abovementioned procedures were repeated by an application of the GRGDS peptide. Results Both FN and bFGF could enhance the osteoblast adhesion efficiency on the bioderived bone (Plt;0.05). However, the osteoblast adhesion efficiency could be significantly strengthened bya combined use of FN and bFGF. FN and bFGF had a significant synergistic effectin statistics (Plt;0.01), but Polylysine and bFGF had no such synergistic effect (P>0.05). The combined use of FN and bFGF had a better effect on the cell density and the cell appearance than either of them when observed with the scanning electron microscope. Adhesion efficiency generated by the combined use of FN and bFGF was significantly blocked by the application of the GRGDS peptide. Conclusion The combined use of FN and bFGF has a significant synergistic effect on the osteoblast adhesion efficiency on the bioderived bone. This effect is probably mediated by the RGD-integrin α5β1 pathway.

          Release date:2016-09-01 09:22 Export PDF Favorites Scan
        • EXPERIMENTAL STUDY ON ECTOPIC BONE FORMATION OF CHITOSAN/PHOSPHONIC CHITOSAN SPONGE COMBINED WITH HUMAN UMBILICAL CORD MESENCHYMAL STEM CELLS

          Objective To investigate the ectopic bone formation of the chitosan/phosphonic chitosan sponge combined with human umbil ical cord mesenchymal stem cells (hUCMSCs) in vitro. Methods Phosphorous groups were introduced in chitosan molecules to prepare the phosphonic chitosan; 2% chitosan and phosphonic chitosan solutions were mixed at a volume ratio of 1 ∶ 1 and freeze-dried to build the complex sponge, and then was put in the simulated body fluid for biomimetic mineral ization in situ. The hUCMSCs were isolated by enzyme digestion method from human umbil ical cord and were cultured. The chitosan/phosphonic chitosan sponge was cultured with hUCMSCs at passage 3, and the cell-scaffoldcomposite was cultured in osteogenic medium. The growth and adhesion of the cells on the scaffolds were observed by l ight microscope and scanning electron microscope (SEM) at 1 and 2 weeks after culturing, respectively. The cell prol iferation was detected by MTT assay at 1, 2, 3, 4, 5, and 6 days, respectively. Bilateral back muscles defects were created on 40 New Zealand rabbits (3-4 months old, weighing 2.1-3.2 kg, male or female), which were divided into groups A, B, and C. In group A, cellscaffold composites were implanted into 40 right defects; in group B, the complex sponge was implanted into 20 left defects; and in group C, none was implanted into other 20 left defects. The gross and histological observations were made at 4 weeks postoperatively. Results The analysis results of phosphonic chitosan showed that the phosphorylation occurred mainly in the hydroxyl, and the proton type and chemical shifts intensity were conform to its chemical structure. The SEM results showed that the pores of the chitosan/phosphonic chitosan sponge were homogeneous, and the wall of the pore was thinner; the coating of calcium and phosphorus could be observed on the surface of the pore wall after mineral ized with crystal particles; the cells grew well on the surface of the chitosan/phosphonic chitosan sponge. The MTT assay showed that the chitosan/phosphonic chitosan sponge could not inhibit the prol iferation of hUCMSCs. The gross observation showed that the size and shape of the cell-scaffold composite remained intact and texture was toughened in group A, the size of the complex sponge gradually reducedin group B, and the muscle defects wound healed with a l ittle scar tissue in group C. The histological observation showed that part of the scaffold was absorbed and new blood vessels and new bone trabeculae formed in group A, the circular cavity and residual chitosan scaffolds were observed in group B, and the wound almost healed with a small amount of lymphocytes in group C. Conclusion The chitosan/phosphonic chitosan sponge has good biocompatibil ity, the tissue engineered bone by combining the hUCMSCs with chitosan/phosphonic chitosan sponge has the potential of the ectopic bone formation in rabbit.

          Release date:2016-08-31 05:42 Export PDF Favorites Scan
        • IN VITRO EXPERIMENTAL STUDY ON INFLUENCES OF FINAL DEGRADATION PRODUCTS OF POLYACTIC ACID ON PROLIFERATION AND OSTEOBLASTIC PHENOTYPE OF OSTEOBLAST-LIKE CELLS

          ObjectiveTo investigate the influences of lactic acid (LA), the final degradation product of polylactic acid (PLA) on the prol iferation and osteoblastic phenotype of osteoblast-l ike cells so as to provide theoretical basis for bone tissue engineering. MethodsRos17/2.8 osteoblast-l ike cells were harvested and divided into 3 groups. In groups A and B, the cells were cultured with the medium containing 4, 8, 16, 22, and 27 mmol/L L-LA and D, L-LA, respectively. In group C, the cells were cultured with normal medium (pH7.4). The cell prol iferation was determined with MTT method after 1, 3, and 5 days. The relative growth ratio (RGR) was calculated, and the cytotoxicity was evaluated according to national standard of China. In addition, the alkal ine phosphatase (ALP) activity of cells cultured with medium containing 4 mmol/L L-LA (group A), 4 mmol/ L D, L-LA (group B), and normal medium (group C) after 1 and 5 days were detected with ALP kits, and the relative ALP ratio (RAR) was calculated; after 21 days, the calcium nodules were tested with von Kossa staining method, and were quantitatively analyzed. ResultsWhen LA concentration was 4 mmol/L, the mean RGR of both groups A and B were all above 80%, and the cytotoxic grades were grade 0 or 1, which meant non-cytotoxicity. When LA concentration was 8 mmol/L and 16 mmol/ L, groups A and B showed cytotoxicity after 5 days and 3 days, respectively. When LA concentration was above 22 mmol/L, cell prol iferations of groups A and B were inhibited evidently after 1-day culture. At each LA concentration, RGR of group A was significantly higher than that of group B at the same culture time (P<0.05) except those at 4 mmol/L after 1-day and 3-day culture. After 1 day, the RAR of group A was significantly higher than that of group B on 1 day (144.1%±3.2% vs. 115.2%±9.8%, P<0.05) and on 5 days (129.6%±9.8% vs. 78.2%±6.9%, P<0.05). The results of von Kossa staining showed that the black gobbets in group A were obviously more than those of groups B and C. The staining area of group A (91.2%±8.2%) was significantly higher than that of groups B (50.3%±7.9%) and C (54.2%±8.6%) (P<0.05). ConclusionThe concentration and composition of LA have significant effects on the cell proliferation and osteoblastic phenotype of osteoblast-l ike cells.

          Release date: Export PDF Favorites Scan
        • EFFECTS OF OSTEOBLASTS AND INDUCTOR ON PROLIFERATION AND OSTEODIFFE RENTIATION OF MARROW STROMAL STEM CELLS

          Objective To find a new culture system to induce proliferation and osteodifferentiation of marrow stromal cells (MSCs) in vitro for bone tissueeng ineering. Methods There were four groups in this experiment to study effects of Passage 3 osteoblasts derived from the rat cranium and the osteogenic inductor (1 nmol/L dexamethasone,10 mmol/L beta-glycero-phosphate,50 μg/ml retin oic acid) on growth of MSCs isolated from the rat femur and the tibia. MSCs were cultured in the DMEM medium (the c ontrol group) and in the osteoinductive culture medium (the inductor group);fur thermore, MSCs were co-cultured with the osteoblasts in the DMEM medium (the osteoblast group) and in the osteoinductive culture medium (the combined treatment group).The cells in the four groups were counted every 2 days for 8 days and alkaline phosphatase (ALP) activity of MSCs at 10 days of cultivation was measured.The MRNA expression of osteocalcin (OC) of MSCs at 2 weeks was assayed with the reverse transcript polymase chain reaction (RT-PCR). Results There were more cells in the osteoblast group than in the control group(31.73±3.31×104 V S. 24.33±3.04×104, Plt;0.05), but there were fewer cells in the inductor gro up(16.23±2.44×104, Plt;0.05). There was no significant difference in th e cell number between the combined treatment group (21.54±2.29×104) and th e control group(Pgt;0.05).The ALP activity was higher in the combined trea tment group (2.01±0.56 U)than in the control group (1.27±0.43 U), in the inductor group(1.27±0.43 U), and in the osteoblast group (0.77±0.19 U).The osteocalcin mRNA was expressed in the three treat ment groups but was not expressed in the control group. The significantly higher leve l of the osteocalcin mRNA was expressed in the inductor group(0.783±0.094)and in the combined treatment group(0.814±0.071)than in the osteoblast group(0.302±0.026) (Plt;0.05). Conclusion The combined use of t he osteoblast and the inductor can induce marrow stromal cells. Their combined u se does not affect the normal proliferation but can obviously promote the osteodifferentiation of marrow stromal cells. This combined use can become a new culture system of the seed cells for bone tissue engineering.

          Release date:2016-09-01 09:25 Export PDF Favorites Scan
        • CELL SHEET TECHNOLOGY AND ITS APPLICATION IN BONE TISSUE ENGINEERING

          ObjectiveTo review the progress of cell sheet technology (CST) and its application in bone tissue engineering. MethodsThe literature concerning CST and its application was extensively reviewed and analyzed. ResultsCST using temperature-responsive culture dishes is applied to avoid the shortcomings of traditional tissue engineering. All cultured cells are harvested as intact sheets along with their deposited extracellular matrix. Avoiding the use of proteolytic enzymes, cell sheet composed of the cells and extracellular matrix derived from the cells, and remained the relative protein and biological activity factors. Consequently, cell sheet can provide a suitable microenvironment for the bone regeneration in vivo. With CST, cell sheet engineering is allowed for tissue regeneration by the creation of three-dimensional structures via the layering of individual cell sheets, be created by wrapping scaffold with cell sheets, or be created by folding the cell sheets, showing great potential in tissue engineered bone. ConclusionConstructing tissue engineered bone using CST and traditional method of bone tissue engineering will promote the development of the bone tissue engineering.

          Release date:2016-08-31 05:39 Export PDF Favorites Scan
        • EXPERIMENTAL STUDY ON CHITOSAN/ALLOGENEIC BONE POWDER COMPOSITE POROUS SCAFFOLD TO REPAIR BONE DEFECTS IN RATS

          ObjectiveTo explore the feasibility of chitosan/allogeneic bone powder composite porous scaffold as scaffold material of bone tissue engineering in repairing bone defect. MethodsThe composite porous scaffolds were prepared with chitosan and decalcified allogeneic bone powder at a ratio of 1∶5 by vacuum freeze-drying technique. Chitosan scaffold served as control. Ethanol alternative method was used to measure its porosity, and scanning electron microscopy (SEM) to measure pore size. The hole of 3.5 mm in diameter was made on the bilateral femoral condyles of 40 adult Sprague Dawley rats. The composite porous scaffolds and chitosan scaffolds were implanted into the hole of the left femoral condyle (experimental group) and the hole of the right femoral condyle (control group), respectively. At 2, 4, 8, and 12 weeks after implantation, the tissues were harvested for gross observation, histological observation, and immunohistochemical staining. ResultsThe composite porous scaffold prepared by vacuum freeze-drying technique had yellowish color, and brittle and easily broken texture; pore size was mostly 200-300μm; and the porosity was 76.8%±1.1%, showing no significant difference when compared with the porosity of pure chitosan scaffold (78.4%±1.4%) (t=-2.10, P=0.09). The gross observation and histological observation showed that the defect area was filled with new bone with time, and new bone of the experimental group was significantly more than that of the control group. At 4, 8, and 12 weeks after implantation, the bone forming area of the experimental group was significantly larger than that of the control group (P < 0.05). The immunohistochemical staining results showed that osteoprotegerin (OPG) positive expression was found in the experimental group at different time points, and the positive expression level was significantly higher than that in the control group (P < 0.05). ConclusionChitosan/allogeneic bone powder composite porous scaffold has suitable porosity and good osteogenic activity, so it is a good material for repairing bone defect, and its bone forming volume and bone formation rate are better than those of pure chitosan scaffold.

          Release date: Export PDF Favorites Scan
        • Preparation of calcium phosphate nanoflowers and evaluation of their antioxidant and osteogenic induction capabilities in vitro

          Objective To investigate the antioxidant and osteogenic induction capabilities of calcium phosphate nanoflowers (hereinafter referred to as nanoflowers) in vitro at different concentrations. Methods Nanoflowers were prepared using gelatin, tripolyphosphate, and calcium chloride. Their morphology, microstructure, elemental composition and distribution, diameter, and molecular constitution were characterized using scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and energy-dispersive spectroscopy. Femurs and tibias were harvested from twelve 4-week-old Sprague Dawley rats, and bone marrow mesenchymal stem cells (BMSCs) were isolated and cultured using the whole bone marrow adherent method, followed by passaging. The third passage cells were identified as stem cells by flow cytometry and then co-cultured with nanoflowers at concentrations of 0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, and 3.6 mg/mL. Cell counting kit 8 (CCK-8) assay was performed to screen for the optimal concentration that demonstrated the best cell viability, which was subsequently used as the experimental concentration for further studies. After co-culturing BMSCs with the screened concentration of nanoflowers, the biocompatibility of the nanoflowers was verified through live/dead cell staining, scratch assay, and cytoskeleton staining. The antioxidant capacity was assessed by using reactive oxygen species (ROS) fluorescence staining. The in vitro osteoinductive ability was evaluated via alkaline phosphatase (ALP) staining, alizarin red staining, and immunofluorescence staining of osteocalcin (OCN) and Runt-related transcription factor 2 (RUNX2). All the above indicators were compared with the control group of normally cultured BMSCs without the addition of nanoflowers. Results Scanning electron microscopy revealed that the prepared nanoflowers exhibited a flower-like structure; transmission electron microscopy scans discovered that the nanoflowers possessed a multi-layered structure, and high-magnification images displayed continuous atomic arrangements, with the nanoflower diameter measuring (2.00±0.25) μm; energy-dispersive spectroscopy indicated that the nanoflowers contained elements such as C, N, O, P, and Ca, which were uniformly distributed across the flower region; Fourier transform infrared spectroscopy analyzed the absorption peaks of each component, demonstrating the successful preparation of the nanoflowers. Through CCK-8 screening, the concentrations of 0.8, 1.2, and 1.6 mg/mL were selected for subsequent experiments. The live/dead cell staining showed that nanoflowers at different concentrations exhibited good cell compatibility, with the 1.2 mg/mL concentration being the best (P<0.05). The scratch assay results indicated that the cell migration ability in the 1.2 mg/mL group was superior to the other groups (P<0.05). The cytoskeleton staining revealed that the cell morphology was well-extended in all concentration groups, with no significant difference compared to the control group. The ROS fluorescence staining demonstrated that the ROS fluorescence in all concentration groups decreased compared to the control group after lipopolysaccharide induction (P<0.05), with the 1.2 mg/mL group showing the weakest fluorescence. The ALP staining showed blue-purple nodular deposits around the cells in all groups, with the 1.2 mg/mL group being significantly more prominent. The alizarin red staining displayed orange-red mineralized nodules around the cells in all groups, with the 1.2 mg/mL group having more and denser nodules. The immunofluorescence staining revealed that the expressions of RUNX2 and OCN proteins in all concentration groups increased compared to the control group, with the 1.2 mg/mL group showing the strongest protein expression (P<0.05). Conclusion The study successfully prepares nanoflowers, among which the 1.2 mg/mL nanoflowers exhibits excellent cell compatibility, antioxidant properties, and osteogenic induction capability, demonstrating their potential as an artificial bone substitute material.

          Release date:2025-09-01 10:12 Export PDF Favorites Scan
        • NEW POROUS β-TRICALCIUM PHOSPHATE AS SCAFFOLD FOR BONE TISSUE ENGINEERING

          Objective To investigate the feasibility of a new kind of porous β tricalcium phosphate (β-TCP) as a scaffold for the bone tissue engineering Methods The inverted phase contrast microscope was used to observe the growth of the marrow mesenchymal stem cells (MSCs) in the experimentalgroup and the control group at 10 days.In the experimental group, the MSCs were cultured with β-TCP(3 mm×3 mm×3 mm) in the 24-hole cultivation board, and in the control to control group, only MSCs were cultivated. The scanning electron microscope was used to observe growth of MSCs at 6 days. Cultivated with β-TCP at 3, 6, 9, 12 days, the MTT assay was used to judge the biocompatibility. The cytotoxicity was analyzed with the method that used the different density(100%, 50%, 10%, 1%,0%) leaching liquor gained from β-TCP to raise MSCs. MSCs were induced into the osteoblasts and were mixed with β-TCP, and the composite was used to repair a large radius bone defect in the rabbit. The specimens were made at 2,6,12 weeks. The histology imageology, and the radionuclide bone scan were used to analyze the bone formation. Results Some MSCs had a good adherence 4 hours after MSCs were inoculated and had a complete adherence at 12 hours. The cells were shaped like polyangle, spindle or converge monolayer after 8-10 days. The cells in the two groups had no difference. The cell adhesion was good, when observed by the inverted phase contrast microscope and the scanning electron microscope at 6 days. MTT showed that the absorbance (A)was not statistically different between the experimental group and the control group (P>0.05); the different density leaching liquor had no cytotoxicity at the different time points. Histology, X-ray, and CT tomograph showed that itcould repair the large radius bone defect in the rabbit and its in vivo degradationrate was the same as the bone formation rate. Conclusion The new porous β-TCP has a unique three dimensional (3D) stereochemical structure and superordinary physicochemical property, and so it is a good scaffold for the bone tissue engineering.

          Release date:2016-09-01 09:20 Export PDF Favorites Scan
        • PROMOTED VASCULARIZATION OF ENHANCED BIOACTIVE GLASS/COLLAGEN COMPOSITE SCAFFOLD

          Objective Rapid and effective vascularization of scaffolds used for bone tissue engineering is critical to bony repair. To study the cooperative and promotion effects of enhanced bioactive glass/collagen composite scaffold on vascularization for searching for a kind of el igible vascularized scaffold to repair bone defect. Methods The human umbil ical vein endothel ial cells (HUVECs) were collected from human umbil ical core, and identified through von Willebrandfactor (vWF) and CD34 immunofluorescence. The 1st passage of HUVECs were suspensed and seeded into the scaffold. The attachment and prol iferation of HUVECs on the scaffold were observed through scanning electron microscope (SEM). HUVECs were seeded on the scaffold as the experimental group, and on 96-well plate as the control group. The growth rate of HUVECs was detected through alarmarBlue at 1, 3, 5, 7, 9, and 11 days. Meanwhile, the mRNA expression levels of VEGF, fms-related tyrosine kinase 1 (Flt-1), and kinase insert domain receptor (Kdr) were detected through real-time fluorescence quantitative PCR. Twelve scaffolds were embedded subcutaneouly into 6 Sprague-Dawley rats. The enhanced scaffolds were used and the arteria and vein saphena bundle were embedded straightly through the central slot of scaffold in experimental group, and the common scaffolds were used in control group. Frozen section and HE staining of scaffolds were performed at 5 days and 10 days to observe the vascularization of embedded scaffold. Results HUVECs were identified through morphology, vWF and CD34 immunofluorescence. SEM results showed HUVECs could attach to the scaffold tightly and viably. HUVECs prol iferated actively on the scaffold in experimental group; the growth rate in experimental group was higher than that in control group at 3-11 days, showing significant differences within 5-11 days (P lt; 0.05). The real-time fluorescence quantitative PCR results showed thatthe mRNA expression levels of VEGF, Flt-1, and Kdr in experimental group were higher than those in control group at 3 days, showing significant differences (P lt; 0.05). Frozen section and HE staining of the scaffolds in experimental group showed that the embedded vessel bundle were still patency at 5 days and 10 days, that many new vessels were observed around the embedded vessel bundle and increased with time, host vessels infiltrated in the surrounding area of scaffold and fewer neo-vessels at the distant area. But there was only some fibrous tissue appeared in control group, and at 10 days, the common scaffold degradated, so few normal tissue appeared at the embedded area. Conclusion Enhanced bioactive glass/collagen composite scaffold can promote vascularization in vitro and in vivo, and may be used in bone tissue engineering.

          Release date:2016-08-31 05:43 Export PDF Favorites Scan
        4 pages Previous 1 2 3 4 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜