Wavelet entropy is a quantitative index to describe the complexity of signals. Continuous wavelet transform method was employed to analyze the spontaneous electroencephalogram (EEG) signals of mild, moderate and severe Alzheimer's disease (AD) patients and normal elderly control people in this study. Wavelet power spectrums of EEG signals were calculated based on wavelet coefficients. Wavelet entropies of mild, moderate and severe AD patients were compared with those of normal controls. The correlation analysis between wavelet entropy and MMSE score was carried out. There existed significant difference on wavelet entropy among mild, moderate, severe AD patients and normal controls (P<0.01). Group comparisons showed that wavelet entropy for mild, moderate, severe AD patients was significantly lower than that for normal controls, which was related to the narrow distribution of their wavelet power spectrums. The statistical difference was significant (P<0.05). Further studies showed that the wavelet entropy of EEG and the MMSE score were significantly correlated (r=0.601-0.799, P<0.01). Wavelet entropy is a quantitative indicator describing the complexity of EEG signals. Wavelet entropy is likely to be an electrophysiological index for AD diagnosis and severity assessment.
ObjectiveTo investigate the quality of life of family caregivers of patients with Alzheimer's disease (AD) and to explore the related factors. MethodsTwenty family caregivers of patients with Alzheimer's disease were surveyed with short form 36 health survey questionnaire between October 2013 and August 2014. ResultsThe subjects who were over 60 years old had lower scores in the dimensions of physical functioning, role limitations due to physical problem and role limitations due to emotional problem than those below 60 years old. Female subjects scored better than male subjects in the dimension of vitality. The sons and daughters had higher scores than the wives and husbands in the dimensions of physical functioning, role limitations due to physical problem and role limitations due to emotional problem. The subjects whose patients had medical insurance scored better than those whose patients with no insurance. The differences above were all statistically significant. The scores of caregivers with senior middle school edudation or above were higher than the caregivers with lower education level in the dimensions of mental health, vitality and general health perceptions. ConclusionThe quality of life of the family members of AD patients is obviously affected by many factors. It is very important to implement planned, targeted, reasonable and effective interventions to enhance the quality of life of these people.
Alzheimer's disease (AD) is a typical neurodegenerative disease, which is clinically manifested as amnesia, loss of language ability and self-care ability, and so on. So far, the cause of the disease has still been unclear and the course of the disease is irreversible, and there has been no cure for the disease yet. Hence, early prognosis of AD is important for the development of new drugs and measures to slow the progression of the disease. Mild cognitive impairment (MCI) is a state between AD and healthy controls (HC). Studies have shown that patients with MCI are more likely to develop AD than those without MCI. Therefore, accurate screening of MCI patients has become one of the research hotspots of early prognosis of AD. With the rapid development of neuroimaging techniques and deep learning, more and more researchers employ deep learning methods to analyze brain neuroimaging images, such as magnetic resonance imaging (MRI), for early prognosis of AD. Hence, in this paper, a three-dimensional multi-slice classifiers ensemble based on convolutional neural network (CNN) and ensemble learning for early prognosis of AD has been proposed. Compared with the CNN classification model based on a single slice, the proposed classifiers ensemble based on multiple two-dimensional slices from three dimensions could use more effective information contained in MRI to improve classification accuracy and stability in a parallel computing mode.
The pathogenesis of Alzheimer's disease (AD), a common neurodegenerative disease, is still unknown. It is difficult to determine the atrophy areas, especially for patients with mild cognitive impairment (MCI) at different stages of AD, which results in a low diagnostic rate. Therefore, an early diagnosis model of AD based on 3-dimensional convolutional neural network (3DCNN) and genetic algorithm (GA) was proposed. Firstly, the 3DCNN was used to train a base classifier for each region of interest (ROI). And then, the optimal combination of the base classifiers was determined with the GA. Finally, the ensemble consisting of the chosen base classifiers was employed to make a diagnosis for a patient and the brain regions with significant classification capability were decided. The experimental results showed that the classification accuracy was 88.6% for AD vs. normal control (NC), 88.1% for MCI patients who will convert to AD (MCIc) vs. NC, and 71.3% for MCI patients who will not convert to AD (MCInc) vs. MCIc. In addition, with the statistical analysis of the behavioral domains corresponding to ROIs (i.e. brain regions), besides left hippocampus, medial and lateral amygdala, and left para-hippocampal gyrus, anterior superior temporal sulcus of middle temporal gyrus and dorsal area 23 of cingulate gyrus were also found with GA. It is concluded that the functions of the selected brain regions mainly are relevant to emotions, memory, cognition and the like, which is basically consistent with the symptoms of indifference, memory losses, mobility decreases and cognitive declines in AD patients. All of these show that the proposed method is effective.
With the exacerbation of aging population in China, the number of patients with Alzheimer's disease (AD) is increasing rapidly. AD is a chronic but irreversible neurodegenerative disease, which cannot be cured radically at present. In recent years, in order to intervene in the course of AD in advance, many researchers have explored how to detect AD as early as possible, which may be helpful for effective treatment of AD. Imaging genomics is a kind of diagnosis method developed in recent years, which combines the medical imaging and high-throughput genetic omics together. It studies changes in cognitive function in patients with AD by extracting effective information from high-throughput medical imaging data and genomic data, providing effective guidance for early detection and treatment of AD patients. In this paper, the association analysis of magnetic resonance image (MRI) with genetic variation are summarized, as well as the research progress on AD with this method. According to complexity, the objects in the association analysis are classified as candidate brain phenotype, candidate genetic variation, genome-wide genetic variation and whole brain voxel. Then we briefly describe the specific methods corresponding to phenotypic of the brain and genetic variation respectively. Finally, some unsolved problems such as phenotype selection and limited polymorphism of candidate genes are put forward.
With the wide application of deep learning technology in disease diagnosis, especially the outstanding performance of convolutional neural network (CNN) in computer vision and image processing, more and more studies have proposed to use this algorithm to achieve the classification of Alzheimer’s disease (AD), mild cognitive impairment (MCI) and normal cognition (CN). This article systematically reviews the application progress of several classic convolutional neural network models in brain image analysis and diagnosis at different stages of Alzheimer’s disease, and discusses the existing problems and gives the possible development directions in order to provide some references.
ObjectiveTo obverse the changes of macular choroidal thickness (CT) in patients with mild to moderate Alzheimer’s disease (AD).MethodsThis was a case-control study. Twenty-one patients with mild to moderate AD confirmed by Neurology Department of Jinhua Central Hospital from November 2016 to June 2018 and 21 age-matched control subjects were concluded in the study. There was no significant difference in age (t=0.128), intraocular pressure (t=0.440) and axial length (t=1.202) between the two groups (P>0.05). There was significant difference in mini-mental state examination score (t=8.608, P<0.05). CT was measured by OCT with enhanced depth imaging technique in the subfoveal choroid, at 0.5 mm and 1.0 mm from the center of the fovea nasal (NCT0.5, 1.0 mm), temporal (TCT0.5, 1.0 mm), superior (SCT0.5, 1 .0 mm), and inferior (ICT0.5, 1.0 mm). Independent-samples t test was used to compare the results obtained from these two groups.ResultsSFCT (t=2.431), NCT0.5, 1.0 mm (t=3.341, 2.640), TCT0.5, 1.0 mm (t=3.340, 2.899), SCT0.5, 1.0 mm (t=3.576, 3.751) and ICT0.5, 1.0 mm (t=2.897, 2.903) were significantly thinner in AD eyes than those in control eyes.ConclusionCompared with healthy subjects, patients with mild to moderate AD showed a significant reduction in CT.
Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder. Due to the subtlety of symptoms in the early stages of AD, rapid and accurate clinical diagnosis is challenging, leading to a high rate of misdiagnosis. Current research on early diagnosis of AD has not sufficiently focused on tracking the progression of the disease over an extended period in subjects. To address this issue, this paper proposes an ensemble model for assisting early diagnosis of AD that combines structural magnetic resonance imaging (sMRI) data from two time points with clinical information. The model employs a three-dimensional convolutional neural network (3DCNN) and twin neural network modules to extract features from the sMRI data of subjects at two time points, while a multi-layer perceptron (MLP) is used to model the clinical information of the subjects. The objective is to extract AD-related features from the multi-modal data of the subjects as much as possible, thereby enhancing the diagnostic performance of the ensemble model. Experimental results show that based on this model, the classification accuracy rate is 89% for differentiating AD patients from normal controls (NC), 88% for differentiating mild cognitive impairment converting to AD (MCIc) from NC, and 69% for distinguishing non-converting mild cognitive impairment (MCInc) from MCIc, confirming the effectiveness and efficiency of the proposed method for early diagnosis of AD, as well as its potential to play a supportive role in the clinical diagnosis of early Alzheimer's disease.
Objective To explore the potential molecular mechanism of Rhodiola crenulata (RC) for type 2 diabetes mellitus (T2DM) and Alzheimer’s disease (AD) by network pharmacology and molecular docking. Methods The target genes of T2DM and AD, the effective active components and targets of RC were identified through multiple public databases during March to August, 2022. The main active components and core genes of RC anti T2DM-AD were screened. The key genes were enrichment analyzed by gene ontology function and Kyoto gene and Kyoto Encyclopedia of Genes and Genomes. AutoDock Vina was used for molecular docking and binding energy calculation. Results A total of 5189 T2DM related genes and 1911 AD related genes were obtained, and the intersection result showed that there were 1418 T2DM-AD related genes. There were 48 active components of RC and 617 corresponding target genes. There were 220 crossing genes between RC and T2DM-AD. The main active components of RC anti T2DM-AD included kaempferol, velutin, and crenulatin. The key genes for regulation include ESR1, EGFR, and AKT1, which were mainly enriched in the hypoxia-inducible factor-1 signal pathway, estrogen signal pathway, and vascular endothelial growth factor signal pathway. The docking binding energies of the main active components of RC and key gene molecules were all less than ?1.2 kcal/mol (1 kcal=4.2 kJ). Conclusions RC may play a role in influencing T2DM and AD by regulating the hypoxia-inducible factor-1 signaling pathway, estrogen signaling pathway, and vascular endothelial growth factor signaling pathway.
With the intensified aging problem, the study of age-related diseases is becoming more and more significant. Alzheimer's disease is a kind of dementia, with senile plaques and neurofibrillary tangles as the main pathological features, and has become one of the major diseases that endanger the health of the elderly. This review is concentrated on the research of the early assessment of Alzheimer's disease. The current situation of early diagnosis of the disease is analyzed, and a prospect of the future development of early assessment means of the disease is also made in the paper.