Objective To investigate the relationship between keloid proliferation and destruction of skin appendages(SAs). Methods Pathological biopsies of keloids were derived from 17 patients whounderwent scar resection. All samples were divided into 4 groups: infiltrating growth locus of keloids(K-I,n=9),proliferative keloids (K-P,n=17), atrophic keloids (K-A,n=10), and edging normal skin (K-N,n=6). Normal skin derived from thorax of patients was used as control (NS, n=6). The density of SAs and the expressive characteristics of pan-cytokeratin (CKp), cytokeratin19 (CK19), secretory component of glandular epithelium(SC), proliferating cell nuclear antigen(PCNA), and apoptosis related proteins (Bcl-2 and Bax) were observed with immunohistochemical method. Results Compared with K-N and NS, the density of SAs expressing CKP and SC in keloids was apparently decreased, and remnant of CKp protein was observed after the disappearance of SAs structures. Protein expression of Bax was increased in epithelial cellsof most SAs. SAs containing postive immunostaining signals of Bcl-2, PCNA and CK19 exhibited squamous epithelization and abnormal structure. The structure of SAs underwent 3 morphological stages: infiltrating, proliferating, and maturing.In correspondence to each stage, SAs underwent proliferation, structural destruction, and fibrosis which were caused by cellular migration, nflammatory reaction, and vascular occlusion respectively. Conclusion Abnormal proliferation of epithelial cells and their structural destruction of SAs may beassociated with tissue fibrosis in keloid lesion.
【Abstract】 Objective To investigate the blood supply of the expanded skin flap from the medial upper arm andits appl ication for the repair of facial and cervical scar. Methods From May 2000 to February 2007, 20 cases (12 males and 8 females; aging from 7 to 42 years) of facial and cervical scar were treated with the expender flap from medial upper arm. The disease course was 9 months to 20 years. The size of the scar was 8 cm × 6 cm - 22 cm × 18 cm. The operation was carried out for three steps: ① The expander was embed under the superior proper fascia. ② The scar in the face and cervix was loosed and dissected. Combined the expanded skin flap from the medial upper arm(the size of the flap was 9 cm × 7 cm - 24 cm × 18 cm) in which the blood supply to the flap was the superior collateral artery and the attributive branches of the basil ica with auxil iary veins for blood collection with partial scar flap (3.5 cm × 2.5 cm - 8.0 cm × 6.0 cm) was harvested and transferred onto the facial and cervical defect. ③ After being cut off the pedicle, the scar was dissected. The expanded flap was employed to coverthe defect. Results After 3-24 months follow-up with 16 cases, all the grafted skin flaps survived at least with nearly normal skin color, texture and contour. The scars at the donor sites were acceptable. The function and appearance of the face and cervix was improved significantly. No surgery-related significant compl ications were observed. Conclusion Repair of facial and cervical scar with the medial upper arm expanded skin flap is a plausible reconstructive option for head and face reconstructions. However, a longer surgery time and some restrictive motion of the harvested upper l imbs might be a disadvantage.
A combined rotational flap was used to repair large scar on the face. The flap was removed from the lateral part of the neck, face and postaural region, between the zygmatic arch and clavicle. The dissection was carried out on the superfic ial of SMAS and platysmus M. Twentysix (12 males and 14 females) were reported. The age ranged from 5 to 28 years. The flap was survived completely in 19 cases. Small area at the margin of the flap was necrotic, which was reducing appeared in the postaural cular region in 6 cases. By reducing the size of the postaural cual component of the flap, necrosis never occured. Among these cases, 11 were followed up for 6 to 14 months. The results were satisfactory. The combined flap was classified as randomized flap because it had no axial and it could be used to cover a large area of skin defect. The color, thickness and quality of the flaps were all close to the normal facial skin. It was considered especially suitable for repair the large wound on the medial twothirds of the cheek.
Objective To study the expression of heat shock protein 47 (HSP47) and its correlation to collagen deposition in pathological scar tissues. Methods The tissues of normal skin(10 cases), hypertrophic scar(19 cases), and keloid(16 cases) were obtained. The expression ofHSP47 was detected by immunohistochemistry method. The collagen fiber content was detected by Sirius red staining and polarization microscopy method. Results Compared with normal skin tissues(Mean IOD 13 050.17±4 789.41), the expression of HSP47 in hypertrophic scar(Mean IOD -521 159.50±272994.13) and keloid tissues(Mean IOD 407 440.30±295 780.63) was significantly high(Plt;0.01). And there was a direct correlation between the expression of HSP47 and the total collagen fiber content(r=0.386,Plt;0.05). Conclusion The HSP47 is highly expressed in pathological scartissues and it may play an important role in the collagen deposition of pathological scar tissues.
OBJECTIVE: To observe the protein expression of phosphorylated form of P38 mitogen-activated protein kinase(P38MAPK) and c-Jun in hypertrophic scar skin and to explore their influences on the formation and maturation of hypertrophic scar. METHODS: The expression intensity and distribution of phosphorylated form of P38MAPK and c-Jun were examined with immunohistochemistry and pathological methods in 16 cases of hypertrophic scar skin and 8 cases of normal skin. RESULTS: In normal skin, the positive signals of phosphorylated form of P38MAPK mostly distributed in basal lamina cells of epidermis, while c-Jun was mainly located in epidermal cells and endothelial cells. The positive cellular rates of two proteins were 21.3% +/- 3.6% and 33.4% +/- 3.5% respectively. In proliferative hypertrophic scar skin, the particles of phosphorylated P38MAPK and c-Jun were mainly located in epidermal cells and some fibroblasts. The positive cellular rates of two proteins were significantly elevated to 69.5% +/- 3.3% and 59.6% +/- 4.3% respectively (P lt; 0.01). In mature hypertrophic scar, the expression of these proteins decreased but was still higher than that of normal skin. CONCLUSION: The formation and maturation of hypertrophic scar might be associated with the alteration of phosphorylated P38MAPK and c-Jun protein expression in hypertrophic scar.
ObjectiveTo review the research progress of the roles of inflammation and immune response in the formation of pathological scar. MethodsThe recent literature concerning the formation mechanism of pathological scar was extensively consulted, inflammation and immune response involved in the formation of pathological scar was reviewed. ResultsThe formation of pathological scar is associated with inflammation and immune response, some inflammatory factors will promote the activation of immune cells, then induce immune cells releasing cytokines and aggravate inflammatory response. However, inflammation response also affects the level of immune response. So they work together to promote the formation of pathological scar by the immuno-inflammatory cells and media. ConclusionThe formation of pathological scar is not only related to inflammation response, but also involves in immune response. Moreover, immune response is the new progress in the study of pathological scar mechanism in recent years. Further research of immuno-inflammatory response will provide new ideas and corresponding basis for the prevention of pathological scar.
ObjectiveTo study the treatment results of the pre-expanded flaps for scar contracture on face, neck, and joints by comparing with the skin grafts. MethodsA total of 240 cases of scar contracture between July 2004 and June 2014 were included in the study by random sampling; skin grafts were used in 120 cases (skin graft group), and preexpanded flaps in 120 cases (pre-expanded flap group). There was no significant difference in age, sex, injury sites, and disease duration between 2 groups (P>0.05). Re-operation rate and A&F 0-6 quantization score were used to evaluate the treatment results. ResultsThe patients were followed up 12 to 75 months (mean, 23.47 months) in the skin graft group, and 12 to 61 months (mean, 19.62 months) in the pre-expanded flap group. The re-operation rate of the skin graft group was 72.5% (87/120), and was significantly higher than that of the pre-expanded flap group (19.2%, 23/120) (P=0.000). The re-operation rate of the neck contracture in teenagers was the highest. It was 93.9% in the skin graft group and 35.0% in the pre-expanded flap group. In the patients who did not undergo re-operations, A&F 0-6 quantization score of the skin graft group was 2.85±1.12, and was significantly lower than that of the pre-expanded flap group (5.22±0.74) (t=13.830, P=0.000). ConclusionPre-expanded flap for scar contracture on face, neck, and joints has lower re-operation rate and better aesthetic and functional restoration than skin graft. It should be regarded as the preferred method for teenagers.