| 1. |
Grigg-Damberger M, Foldvary-Schaefer N. Bidirectional relationships of sleep and epilepsy in adults with epilepsy. Epilepsy Behav, 2021, 116: 107735.
|
| 2. |
Dehghani M, Fayyazi A, Cheraghi F, et al. The relationship between severity of epilepsy and sleep disorder in epileptic children. Iran J Child Neurol, 2019, 13(2): 77-88.
|
| 3. |
Maganti RK, Jones MV. Untangling a web: basic mechanisms of the complex interactions between sleep, circadian rhythms, and epilepsy. Epilepsy Curr, 2021, 21(2): 105-110.
|
| 4. |
Daley JT, DeWolfe JL. Sleep, circadian rhythms, and epilepsy. Curr Treat Options Neurol, 2018, 20(11): 47.
|
| 5. |
Jain SV, Glauser TA. Effects of epilepsy treatments on sleep architecture and daytime sleepiness: an evidence-based review of objective sleep metrics. Epilepsia, 2014, 55(1): 26-37.
|
| 6. |
Scarlatelli-Lima AV, Sukys-Claudino L, Watanabe N, et al. How do people with drug-resistant mesial temporal lobe epilepsy sleep? A clinical and video-EEG with EOG and submental EMG for sleep staging study. eNeurologicalSci, 2016, 4: 34-41.
|
| 7. |
Yeh WC, Lai CL, Wu MN, et al. Rapid eye movement sleep disturbance in patients with refractory epilepsy: a polysomnographic study. Sleep Med, 2021, 81: 101-108.
|
| 8. |
Winsor AA, Richards C, Bissell S, et al. Sleep disruption in children and adolescents with epilepsy: a systematic review and meta-analysis. Sleep Med Rev, 2021, 57: 101416.
|
| 9. |
Bazil CW, Short D, Crispin D, et al. Patients with intractable epilepsy have low melatonin, which increases following seizures. Neurology, 2000, 55(11): 1746-1748.
|
| 10. |
de Lima E, Soares JM Jr, del Carmen Sanabria Garrido Y, et al. Effects of pinealectomy and the treatment with melatonin on the temporal lobe epilepsy in rats. Brain Res, 2005, 1043(1-2): 24-31.
|
| 11. |
Ko GY, Shi L, Ko ML. Circadian regulation of ion channels and their functions. J Neurochem, 2009, 110(4): 1150-1169.
|
| 12. |
Herman ST, Walczak TS, Bazil CW. Distribution of partial seizures during the sleep-wake cycle: differences by seizure onset site. Neurology, 2001, 56(11): 1453-1459.
|
| 13. |
Unterberger I, Gabelia D, Prieschl M, et al. Sleep disorders and circadian rhythm in epilepsy revisited: a prospective controlled study. Sleep Med, 2015, 16(2): 237-242.
|
| 14. |
Anaclet C, Ferrari L, Arrigoni E, et al. The GABAergic parafacial zone is a medullary slow wave sleep-promoting center. Nat Neurosci, 2014, 17(9): 1217-1224.
|
| 15. |
Chung S, Weber F, Zhong P, et al. Identification of preoptic sleep neurons using retrograde labelling and gene profiling. Nature, 2017, 545(7655): 477-481.
|
| 16. |
Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature, 2005, 437(7063): 1257-1263.
|
| 17. |
Liu K, Kim J, Kim DW, et al. Lhx6-positive GABA-releasing neurons of the zona incerta promote sleep. Nature, 2017, 548(7669): 582-587.
|
| 18. |
Yamatsu A, Yamashita Y, Pandharipande T, et al. Effect of oral γ-aminobutyric acid (GABA) administration on sleep and its absorption in humans. Food Sci Biotechnol, 2016, 25(2): 547-551.
|
| 19. |
Hong KB, Park Y, Suh HJ. Sleep-promoting effects of the GABA/5-HTP mixture in vertebrate models. Behav Brain Res, 2016, 310: 36-41.
|
| 20. |
Chen X, Jia X, Zhang Y, et al. The combined use of gamma-aminobutyric acid and walnut peptide enhances sleep in mice. Ann Palliat Med, 2021, 10(10): 11074-11082.
|
| 21. |
Riaz M, Abbasi MH, Sheikh N, et al. GABRA1 and GABRA6 gene mutations in idiopathic generalized epilepsy patients. Seizure, 2021, 93: 88-94.
|
| 22. |
Meyerhoff DJ, Mon A, Metzler T, et al. Cortical gamma-aminobutyric acid and glutamate in posttraumatic stress disorder and their relationships to self-reported sleep quality. Sleep, 2014, 37(5): 893-900.
|
| 23. |
Smirnova EY, Chizhov AV, Zaitsev AV. Presynaptic GABAB receptors underlie the antiepileptic effect of low-frequency electrical stimulation in the 4-aminopyridine model of epilepsy in brain slices of young rats. Brain Stimul, 2020, 13(5): 1387-1395.
|
| 24. |
Jones BE. From waking to sleeping: neuronal and chemical substrates. Trends Pharmacol Sci, 2005, 26(11): 578-586.
|
| 25. |
Scammell TE, Arrigoni E, Lipton JO. Neural circuitry of wakefulness and sleep. Neuron, 2017, 93(4): 747-765.
|
| 26. |
楊燕飛, 黃志力. 特異性控制神經元活性法研究睡眠-覺醒機制新進展. 神經藥理學報, 2018, 8(1): 23-34.
|
| 27. |
鐘明奎, 趙樂章, 張瑾, 等. 海馬微量注射乙酰膽堿和阿托品對大鼠睡眠的影響. 中國中醫基礎醫學雜志, 2002, 8(1): 9-10.
|
| 28. |
Ni KM, Hou XJ, Yang CH, et al. Selectively driving cholinergic fibers optically in the thalamic reticular nucleus promotes sleep. Elife, 2016, 5: e10382.
|
| 29. |
Dai X, Zhou E, Yang W, et al. Molecular resolution of a behavioral paradox: sleep and arousal are regulated by distinct acetylcholine receptors in different neuronal types in Drosophila. Sleep, 2021, 44(7): zsab017.
|
| 30. |
Weltzin MM, George AA, Lukas RJ, et al. Sleep-related hypermotor epilepsy associated mutations uncover important kinetic roles of α4β2- nicotinic acetylcholine receptor intracellular structures. PLoS One, 2021, 16(3): e0247825.
|
| 31. |
Gigout S, Wierschke S, Dehnicke C, et al. Different pharmacology of N-desmethylclozapine at human and rat M2 and M 4 mAChRs in neocortex. Naunyn Schmiedebergs Arch Pharmacol, 2015, 388(5): 487-496.
|
| 32. |
Burgess HJ, Emens JS. Circadian-based therapies for circadian rhythm sleep-wake disorders. Curr Sleep Med Rep, 2016, 2(3): 158-165.
|
| 33. |
Niu L, Li Y, Zong P, et al. Melatonin promotes sleep by activating the BK channel in C. elegans. Proc Natl Acad Sci U S A, 2020, 117(40): 25128-25137.
|
| 34. |
Iyer KK, Zalesky A, Cocchi L, et al. Neural correlates of sleep recovery following melatonin treatment for pediatric concussion: a randomized controlled trial. J Neurotrauma, 2020, 37(24): 2647-2655.
|
| 35. |
Jia X, Zhang L, Zhang W, et al. Melatonin ameliorates the sleep disorder induced by surgery under sevoflurane anaesthesia in aged mice. Basic Clin Pharmacol Toxicol, 2021, 128(2): 256-267.
|
| 36. |
Jafari-Koulaee A, Bagheri-Nesami M. The effect of melatonin on sleep quality and insomnia in patients with cancer: a systematic review study. Sleep Med, 2021, 82: 96-103.
|
| 37. |
Schapel GJ, Beran RG, Kennaway DL, et al. Melatonin response in active epilepsy. Epilepsia, 1995, 36(1): 75-78.
|
| 38. |
Molina-Carballo A, Mu?oz-Hoyos A, Sánchez-Forte M, et al. Melatonin increases following convulsive seizures may be related to its anticonvulsant properties at physiological concentrations. Neuropediatrics, 2007, 38(3): 122-125.
|
| 39. |
郭靜芳, 姚寶珍. 癲癎和熱性驚厥患兒血清褪黑素水平的變化及其臨床意義. 中國當代兒科雜志, 2009, 11(04): 288-290.
|
| 40. |
Yalyn O, Arman F, Erdo?an F, et al. A comparison of the circadian rhythms and the levels of melatonin in patients with diurnal and nocturnal complex partial seizures. Epilepsy Behav, 2006, 8(3): 542-546.
|
| 41. |
Ay?a S, Aksoy HU, Ta?tan ?, et al. Levels of melatonin in continuous spikes and waves during sleep. J Child Neurol, 2019, 34(6): 309-312.
|
| 42. |
Ma Y, Sun X, Li J, et al. Melatonin alleviates the epilepsy-associated impairments in hippocampal LTP and spatial learning through rescue of surface GluR2 expression at hippocampal CA1 synapses. Neurochem Res, 2017, 42(5): 1438-1448.
|
| 43. |
Jagannath A, Varga N, Dallmann R, et al. Adenosine integrates light and sleep signalling for the regulation of circadian timing in mice. Nat Commun, 2021, 12(1): 2113.
|
| 44. |
Boison D, Aronica E. Comorbidities in neurology: is adenosine the common link? Neuropharmacology, 2015, 97: 18-34.
|
| 45. |
Masino SA, Li T, Theofilas P, et al. A ketogenic diet suppresses seizures in mice through adenosine A1 receptors. J Clin Invest, 2011, 121(7): 2679-2683.
|
| 46. |
Warren TJ, Simeone TA, Smith DD, et al. Adenosine has two faces: regionally dichotomous adenosine tone in a model of epilepsy with comorbid sleep disorders. Neurobiol Dis, 2018, 114: 45-52.
|
| 47. |
Li R, Wang YQ, Liu WY, et al. Activation of adenosine A2A receptors in the olfactory tubercle promotes sleep in rodents. Neuropharmacology, 2020, 168: 107923.
|
| 48. |
Wang YQ, Li R, Wang DR, et al. Adenosine A2A receptors in the olfactory bulb suppress rapid eye movement sleep in rodents. Brain Struct Funct, 2017, 222(3): 1351-1366.
|
| 49. |
Zhou X, Oishi Y, Cherasse Y, et al. Extracellular adenosine and slow-wave sleep are increased after ablation of nucleus accumbens core astrocytes and neurons in mice. Neurochem Int, 2019, 124: 256-263.
|
| 50. |
Carley DW, Trbovic SM, Radulovacki M. Diazepam suppresses sleep apneas in rats. Am J Respir Crit Care Med, 1998, 157(3): 917-920.
|
| 51. |
張小軍, 徐建芳. 左乙拉西坦遞增療法對局灶性癲癇患兒腦神經遞質及睡眠結構的影響. 實用醫院臨床雜志, 2021, 18(2): 156-159.
|
| 52. |
Bazil CW, Dave J, Cole J, et al. Pregabalin increases slow-wave sleep and may improve attention in patients with partial epilepsy and insomnia. Epilepsy Behav, 2012, 23(4): 422-425.
|
| 53. |
Romigi A, Izzi F, Marciani MG, et al. Pregabalin as add-on therapy induces REM sleep enhancement in partial epilepsy: a polysomnographic study. Eur J Neurol, 2009, 16(1): 70-75.
|
| 54. |
Ayala-Guerrero F, Mexicano G, Gutiérrez-Chávez CA, et al. Effect of gabapentin on sleep patterns disturbed by epilepsy. Epilepsy Behav, 2019, 92: 290-296.
|
| 55. |
Zhang H, Li Y, Li X, et al. Effect of sodium valproate on the sleep structures of epileptic patients. Exp Ther Med, 2014, 7(5): 1227-1232.
|
| 56. |
Liu J, Clough SJ, Hutchinson AJ, et al. MT1 and MT2 melatonin receptors: a therapeutic perspective. Annu Rev Pharmacol Toxicol, 2016, 56(1): 361-383.
|
| 57. |
Muehlan C, Vaillant C, Zenklusen I, et al. Clinical pharmacology, efficacy, and safety of orexin receptor antagonists for the treatment of insomnia disorders. Expert Opin Drug Metab Toxicol, 2020, 16(11): 1063-1078.
|
| 58. |
Gizowski C, Bourque CW. Sodium regulates clock time and output via an excitatory GABAergic pathway. Nature, 2020, 583(7816): 421-424.
|