| 1. |
Tang X, Wang S, Zhan S, et al. The prevalence of symptomatic knee osteoarthritis in China: Results from the China health and retirement longitudinal study. Arthritis Rheumatol, 2016, 68(3): 648-653.
|
| 2. |
曾緒雯, 楊春喜. 膝關節單髁置換術假體生存率的研究進展. 中華關節外科雜志 (電子版), 2019, 13(5): 606-610.
|
| 3. |
Fu J, Wang Y, Li X, et al. Robot-assisted vs. conventional unicompartmental knee arthroplasty: Systematic review and meta-analysis. Orthopade, 2018, 47(12): 1009-1017.
|
| 4. |
高陽陽, 車先達, 韓鵬飛, 等. 機器人輔助與傳統手法行單髁置換效果的Meta分析. 中國組織工程研究, 2019, 23(36): 5889-5895.
|
| 5. |
Hernigou P, Deschamps G. Alignment influences wear in the knee after medial unicompartmental arthroplasty. Clin Orthop Relat Res, 2004, (423): 161-165.
|
| 6. |
Hamilton WG, Collier MB, Tarabee E, et al. Incidence and reasons for reoperation after minimally invasive unicompartmental knee arthroplasty. J Arthroplasty, 2006, 21(6 Suppl 2): 98-107.
|
| 7. |
Hernigou P, Deschamps G. Posterior slope of the tibial implant and the outcome of unicompartmental knee arthroplasty. J Bone Joint Surg (Am), 2004, 86(3): 506-511.
|
| 8. |
Cartier P, Sanouiller JL, Grelsamer RP. Unicompartmental knee arthroplasty surgery. 10-year minimum follow-up period. J Arthroplasty, 1996, 11(7): 782-788.
|
| 9. |
龔恒, 黃斌, 付立功, 等. 中國漢族人與美國高加索白人膝關節幾何形態的比較. 中國組織工程研究, 2020, 24(33): 5366-5370.
|
| 10. |
Hurst JM, Berend KR. Mobile-bearing unicondylar knee arthroplasty: the Oxford experience. Clin Sports Med, 2014, 33(1): 105-121.
|
| 11. |
Faour-Martín O, Valverde-García JA, Martín-Ferrero MA, et al. Oxford phase 3 unicondylar knee arthroplasty through a minimally invasive approach: long-term results. Int Orthop, 2013, 37(5): 833-838.
|
| 12. |
Brazier J, Migaud H, Gougeon F, et al. Evaluation of methods for radiographic measurement of the tibial slope. A study of 83 healthy knees. Rev Chir Orthop Reparatrice Appar Mot, 1996, 82(3): 195-200.
|
| 13. |
Denis K, Van Ham G, Bellemans J, et al. How correctly does an intramedullary rod represent the longitudinal tibial axes? Clin Orthop Relat Res, 2002, (397): 424-433.
|
| 14. |
Julliard R, Genin P, Weil G, et al. The median functional slope of the tibia. Principle. Technique of measurement. Value. Interest. Rev Chir Orthop Reparatrice Appar Mot, 1993, 79(8): 625-634.
|
| 15. |
Genin P, Weill G, Julliard R. The tibial slope. Proposal for a measurement method. J Radiol, 1993, 74(1): 27-33.
|
| 16. |
Dejour H, Bonnin M. Tibial translation after anterior cruciate ligament rupture. Two radiological tests compared. J Bone Joint Surg (Br), 1994, 76(5): 745-749.
|
| 17. |
Chiu KY, Zhang SD, Zhang GH. Posterior slope of tibial plateau in Chinese. J Arthroplasty, 2000, 15(2): 224-227.
|
| 18. |
Stijak L, Herzog RF, Schai P. Is there an influence of the tibial slope of the lateral condyle on the ACL lesion? A case-control study. Knee Surg Sports Traumatol Arthrosc, 2008, 16(2): 112-117.
|
| 19. |
Utzschneider S, Goettinger M, Weber P, et al. Development and validation of a new method for the radiologic measurement of the tibial slope. Knee Surg Sports Traumatol Arthrosc, 2011, 19(10): 1643-1648.
|
| 20. |
Faschingbauer M, Sgroi M, Juchems M, et al. Can the tibial slope be measured on lateral knee radiographs? Knee Surg Sports Traumatol Arthrosc, 2014, 22(12): 3163-3167.
|
| 21. |
Han HS, Chang CB, Seong SC, et al. Evaluation of anatomic references for tibial sagittal alignment in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc, 2008, 16(4): 373-377.
|
| 22. |
Moon YW, Ha CW, Do KH, et al. Comparison of robot-assisted and conventional total knee arthroplasty: a controlled cadaver study using multiparameter quantitative three-dimensional CT assessment of alignment. Comput Aided Surg, 2012, 17(2): 86-95.
|
| 23. |
Decking J, Theis C, Achenbach T, et al. Robotic total knee arthroplasty: the accuracy of CT-based component placement. Acta Orthop Scand, 2004, 75(5): 573-579.
|
| 24. |
Yoo JH, Chang CB, Shin KS, et al. Anatomical references to assess the posterior tibial slope in total knee arthroplasty: a comparison of 5 anatomical axes. J Arthroplasty, 2008, 23(4): 586-592.
|
| 25. |
Giffin JR, Vogrin TM, Zantop T, et al. Effects of increasing tibial slope on the biomechanics of the knee. Am J Sports Med, 2004, 32(2): 376-382.
|
| 26. |
Giffin JR, Stabile KJ, Zantop T, et al. Importance of tibial slope for stability of the posterior cruciate ligament deficient knee. Am J Sports Med, 2007, 35(9): 1443-1449.
|
| 27. |
Singerman R, Dean JC, Pagan HD, et al. Decreased posterior tibial slope increases strain in the posterior cruciate ligament following total knee arthroplasty. J Arthroplasty, 1996, 11(1): 99-103.
|
| 28. |
Migaud H, De Ladoucette A, Dohin B, et al. Influence of the tibial slope on tibial translation and mobility of non-constrained total knee prosthesis. Rev Chir Orthop Reparatrice Appar Mot, 1996, 82(1): 7-13.
|
| 29. |
Zeng C, Cheng L, Wei J, et al. The influence of the tibial plateau slopes on injury of the anterior cruciate ligament: a meta-analysis. Knee Surg Sports Traumatol Arthrosc, 2014, 22(1): 53-65.
|
| 30. |
Shelburne KB, Kim HJ, Sterett WI, et al. Effect of posterior tibial slope on knee biomechanics during functional activity. J Orthop Res, 2011, 29(2): 223-231.
|
| 31. |
Li Y, Hong L, Feng H, et al. Posterior tibial slope influences static anterior tibial translation in anterior cruciate ligament reconstruction: a minimum 2-year follow-up study. Am J Sports Med, 2014, 42(4): 927-933.
|
| 32. |
Garg A, Walker PS. Prediction of total knee motion using a three-dimensional computer-graphics model. J Biomech, 1990, 23(1): 45-58.
|
| 33. |
馬廣文, 黃斐, 吳云峰, 等. 脛骨后傾截骨對活動平臺單髁關節置換術療效的影響. 中華骨與關節外科雜志, 2017, 10(4): 302-304,320.
|
| 34. |
Chatellard R, Sauleau V, Colmar M, et al. Medial unicompartmental knee arthroplasty: does tibial component position influence clinical outcomes and arthroplasty survival? Orthop Traumatol Surg Res, 2013, 99(4 Suppl): S219-225.
|
| 35. |
Weber P, Schr?der C, Schmidutz F, et al. Increase of tibial slope reduces backside wear in medial mobile bearing unicompartmental knee arthroplasty. Clin Biomech (Bristol, Avon), 2013, 28(8): 904-909.
|
| 36. |
吳坤能, 趙改平, 劉冬青, 等. 膝關節單髁置換術脛骨假體不同后傾角對假體磨損和功能的影響. 醫用生物力學, 2021, 36(4): 618-624.
|
| 37. |
Clarius M, Hauck C, Seeger JB, et al. Correlation of positioning and clinical results in Oxford UKA. Int Orthop, 2010, 34(8): 1145-1151.
|
| 38. |
Dao Trong ML, Diezi C, Goerres G, et al. Improved positioning of the tibial component in unicompartmental knee arthroplasty with patient-specific cutting blocks. Knee Surg Sports Traumatol Arthrosc, 2015, 23(7): 1993-1998.
|
| 39. |
Suero EM, Hüfner T, Stübig T, et al. Use of a virtual 3D software for planning of tibial plateau fracture reconstruction. Injury, 2010, 41(6): 589-591.
|
| 40. |
Weber P, Crispin A, Schmidutz F, et al. Improved accuracy in computer-assisted unicondylar knee arthroplasty: a meta-analysis. Knee Surg Sports Traumatol Arthrosc, 2013, 21(11): 2453-2461.
|
| 41. |
Khow YZ, Liow MHL, Lee M, et al. Posterior condylar offset and posterior tibial slope targets to optimize knee flexion after unicompartmental knee arthroplasty. Knee Surg Sports Traumatol Arthrosc, 2021. doi: 10.1007/s00167-021-06453-7.
|