| 1. |
韓春茂, 喬亮, 王新剛, 等. 傷口衛生系列國際專家共識的解讀. 浙江醫學, 2023, 45(4): 337-341.
|
| 2. |
Yaghi O M, Li H L. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J Am Chem Soc, 1995, 117(41): 10401-10402.
|
| 3. |
Li Z, He M, Wang Y, et al. Advances in biocompatible metal-organic frameworks for biomedical applications. Adv Mater, 2025, 37(33): e2503946.
|
| 4. |
Xing F, Ma H, Yu P Y, et al. Multifunctional metal-organic frameworks for wound healing and skin regeneration. Mater Des, 2023, 233: 112252.
|
| 5. |
郭袁源. 金屬有機骨架復合材料的合成及應用研究. 當代化工研究, 2024(2): 107-109.
|
| 6. |
Wu M, Sun Y, Ji T, et al. Fabrication of water-stable MOF-808 membrane for efficient salt/dye separation. J Membr Sci, 2023, 686: 122023.
|
| 7. |
Zhang P, Kang X, Tao L, et al. A new route for the rapid synthesis of metal–organic frameworks at room temperature. CCS Chem, 2023, 5(6): 1462-1469.
|
| 8. |
Wiegerinck H T M, Demirel ? H, Zwijnenberg H J, et al. Controlled localized metal–organic framework synthesis on anion exchange membranes. ACS Appl Mater Interfaces, 2024, 16(24): 31703-31708.
|
| 9. |
Gao Y, Wang F, Wang C-C, et al. Microwave-assisted production of metal-organic frameworks for water purification: A mini-review. Surf Interfaces, 2024, 44: 103724.
|
| 10. |
Gao Y, Yi X-H, Wang C-C, et al. Effective Cr(VI) reduction over high throughput Bi-BDC MOF photocatalyst. Mater Res Bull, 2023, 158: 112072.
|
| 11. |
Zhou S, Shekhah O, Ramírez A, et al. Asymmetric pore windows in MOF membranes for natural gas valorization. Nature, 2022, 606(7915): 706-712.
|
| 12. |
Annamalai J, Murugan P, Ganapathy D, et al. Synthesis of various dimensional metal organic frameworks (MOFs) and their hybrid composites for emerging applications–A review. Chemosphere, 2022, 298: 134184.
|
| 13. |
Yi B, Zhao H, Cao L, et al. A direct mechanochemical conversion of Pt-doped metal-organic framework-74 from doped metal oxides for CO oxidation. Mater Today Nano, 2022, 17: 100158.
|
| 14. |
Ren X L, Chang L N, Hu Y A, et al. Au@MOFs used as peroxidase-like catalytic nanozyme for bacterial infected wound healing through bacterial membranes disruption and protein leakage promotion. Mater Des, 2023, 229: 11890.
|
| 15. |
Wang X X, Qiu H J, Xiang Z R, et al. Porous chitin powder decorated with ZIF-8-derived nanozyme for diabetic infected wound healing. Carbohydr Polym, 2025, 370: 124440.
|
| 16. |
He Q T, Qian P P, Yang X Y, et al. Rational design of Bacteria-Targeted and Photo-Responsive MOF gel with antibacterial and anti-inflammatory function for infected wound healing. Chem Eng J, 2024, 493: 152760.
|
| 17. |
Yao S, Wang Y T, Chi J J, et al. Porous MOF microneedle array patch with photothermal responsive nitric oxide delivery for wound healing. Adv Sci, 2022, 9(3): 2103449.
|
| 18. |
Du J Y, Hou J R, Liu S J, et al. Curcumin-loaded silver-based metal-organic frameworks: Efficient antibacterial and antioxidant properties against Escherichia coli and Staphylococcus aureus for promoting infected wound healing. Acs Appl Bio Mater, 2025, 8(5): 4140-4152.
|
| 19. |
Li F, Du Y, Zheng Y, et al. Microenvironment-responsive MOF nanozymes armored cryogels promoted wound healing via rapid hemostasis, infection elimination and angiogenesis. J Control Release, 2025, 384: 113838.
|
| 20. |
Wang R, Li X, Wang C, et al. Tight orchestration of wound healing phase through metal-organic compounds. Biomater, 2025, 318: 123160.
|
| 21. |
Gwon K, Lee S, Kim Y, et al. Construction of a bioactive copper-based metal organic framework-embedded dual-crosslinked alginate hydrogel for antimicrobial applications. Int J Biol Macromol, 2023, 242(Pt 1): 124840.
|
| 22. |
Geng P, Yu N, Macharia D K, et al. MOF-derived CuS@Cu-MOF nanocomposites for synergistic photothermal-chemodynamic-chemo therapy. Chem Eng J, 2022, 441: 135964.
|
| 23. |
Li Q J, Xing F, Wu W T, et al. Multifunctional metal-organic frameworks as promising nanomaterials for antimicrobial strategies. Burns Trauma, 2025, 13: tkaf008.
|
| 24. |
Hu F, Xia S S, He Y, et al. Reactive organic radical-doped Ag(I)-based coordination compounds for highly efficient antibacterial wound therapy. Colloids Surf B Biointerfaces, 2022, 213: 112425.
|
| 25. |
Shen C, Xu L, Zhang G, et al. Layer-by-layer self-assembly of core/shell pH-responsive MOF microcarriers coated with polyelectrolyte hydrogels for controlled antimicrobial delivery. Chem Eng J, 2025: 169139.
|
| 26. |
He Y, Wang X, Zhang C, et al. Near‐infrared light‐mediated cyclodextrin metal–organic frameworks for synergistic antibacterial and anti‐biofilm therapies. Small, 2023, 19(35): 2300199.
|
| 27. |
Liu Z, Tan L, Liu X, et al. Zn2+-assisted photothermal therapy for rapid bacteria-killing using biodegradable humic acid encapsulated MOFs. Colloids Surf B, 2020, 188: 110781.
|
| 28. |
Chen M, Zhang J, Qi J, et al. Boronic acid-decorated multivariate photosensitive metal–organic frameworks for combating multi-drug-resistant bacteria. ACS Nano, 2022, 16(5): 7732-7744.
|
| 29. |
Feng Y, Chen F, Rosenholm J M, et al. Efficient nanozyme engineering for antibacterial therapy. Mater Futures, 2022, 1(2): 023502.
|
| 30. |
Chen Z, Shan J, Niu Q, et al. pH-responsive double-enzyme active metal–organic framework for promoting the healing of infected wounds. J Colloid Interface Sci, 2024, 657: 250-262.
|
| 31. |
Sun H, Dan J, Liang Y, et al. Dimensionality reduction boosts the peroxidase-like activity of bimetallic MOFs for enhanced multidrug-resistant bacteria eradication. Nanoscale, 2022, 14(32): 11693-11702.
|
| 32. |
Shi Q, Zhao Y, Liu M, et al. Engineering platelet membrane‐coated bimetallic MOfs as biodegradable nanozymes for efficient antibacterial therapy. Small, 2023, 20(23): 2309336.
|
| 33. |
Wang M, Zhou X, Li Y, et al. Triple-synergistic MOF-nanozyme for efficient antibacterial treatment. Bioact Mater, 2022, 17: 289-299.
|
| 34. |
Xia X, Song X, Li Y, et al. Antibacterial and anti-inflammatory ZIF-8@Rutin nanocomposite as an efficient agent for accelerating infected wound healing. Front Bioeng Biotechnol, 2022, 10: 1026743.
|
| 35. |
Ahmed R, Augustine R, Chaudhry M, et al. Nitric oxide-releasing biomaterials for promoting wound healing in impaired diabetic wounds: State of the art and recent trends. Biomed Pharmacother, 2022, 149: 112707.
|
| 36. |
Zhang P, Li Y, Tang Y, et al. Copper-based metal–organic framework as a controllable nitric oxide-releasing vehicle for enhanced diabetic wound healing. ACS Appl Mater Interfaces, 2020, 12(16): 18319-18331.
|
| 37. |
Zeng Y, Wang C, Lei K, et al. Multifunctional MOF‐based microneedle patch with synergistic chemo‐photodynamic antibacterial effect and sustained release of growth factor for chronic wound healing. Adv Healthcare Mater, 2023, 12(19): 2300250.
|
| 38. |
Li X, Wang W, Gao Q, et al. Intelligent bacteria-targeting ZIF-8 composite for fluorescence imaging-guided photodynamic therapy of drug-resistant superbug infections and burn wound healing. Explor (Beijing). 2024, 4(6): 20230113.
|
| 39. |
Weng P, Liu K, Yuan M, et al. Development of a ZIF-91-porous-liquid-based composite hydrogel dressing system for diabetic wound healing. Small, 2023, 19(25): e2301012.
|
| 40. |
Huang K, Liu W, Wei W, et al. Photothermal hydrogel encapsulating intelligently bacteria-capturing Bio-MOF for infectious wound healing. ACS Nano, 2022, 16(11): 19491-19508.
|
| 41. |
Ali S H, Mahammed M A, Yasin S A. Characterization of electrospinning chitosan nanofibers used for wound dressing. Polymers (Basel), 2024, 16(14): 1984.
|
| 42. |
Yin L, Tang Q, Ke Q, et al. Sequential anti-infection and proangiogenesis of DMOG@ZIF-8/gelatin-PCL electrospinning dressing for chronic wound healing. ACS Appl Mater Interfaces, 2023, 15(42): 48903-48912.
|
| 43. |
Wang Q, Han Q, Xu X, et al. Bioinspired Zn-MOF doped radial porous chitosan-based sponge with antibacterial and antioxidant properties for rapid hemostasis and wound healing. Int J Biol Macromol, 2024, 259(Pt 2): 128960.
|
| 44. |
Chen J, Huang Z, Zhang H, et al. Three-dimensional layered nanofiber sponge with in situ grown silver-metal organic framework for enhancing wound healing. Chem Eng J, 2022, 443: 136234.
|
| 45. |
Yao S, Chi J, Wang Y, et al. Zn‐MOF encapsulated antibacterial and degradable microneedles array for promoting wound healing. Adv Healthcare Mater, 2021, 10(12): e2100056.
|
| 46. |
Xiao J, Zhu Y, Huddleston S, et al. Copper metal-organic framework nanoparticles stabilized with folic acid improve wound healing in diabetes. ACS Nano, 2018, 12(2): 1023-1032.
|
| 47. |
Jo J H, Kim H C, Huh S, et al. Antibacterial activities of Cu-MOFs containing glutarates and bipyridyl ligands. Dalton Trans, 2019, 48(23): 8084-8093.
|