| 1. |
Maida M, Dahiya D S, Shah Y R, et al. Screening and surveillance of colorectal cancer: A review of the literature. Cancers, 2024, 16(15): 2746.
|
| 2. |
李國威, 劉靜, 曹慧, 等. 深度學習在結腸息肉圖像分割中的研究綜述. 計算機科學與探索, 2025, 19(5): 1198-1216.
|
| 3. |
Grion B A R, Fonseca P L C, Kato R B, et al. Identification of taxonomic changes in the fecal bacteriome associated with colorectal polyps and cancer: potential biomarkers for early diagnosis. Front Microbiol, 2024, 14: 1292490.
|
| 4. |
尹藝曉, 馬金剛, 張文凱, 等. 從U-Net到Transformer: 混合模型在醫學圖像分割中的應用進展. 激光與光電子學進展, 2025, 62(2): 11-33.
|
| 5. |
考文濤, 李明, 馬金剛. 卷積神經網絡在結直腸息肉輔助診斷中的應用綜述. 計算機科學與探索, 2024, 18(3): 627-645.
|
| 6. |
孫福艷, 王瓊, 呂宗旺, 等. 深度學習在結腸息肉分割中的應用綜述. 計算機工程與應用, 2023, 59(23): 15-27.
|
| 7. |
Xiao B, Hu J, Li W, et al. CTNet: Contrastive transformer network for polyp segmentation. IEEE T Cybern, 2024, 54(9): 5040-5053.
|
| 8. |
Bernal J, Sánchez F J, Fernández-Esparrach G, et al. WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Comput Med Imag Grap, 2015, 43: 99-111.
|
| 9. |
Tajbakhsh N, Gurudu S R, Liang J. Automated polyp detection in colonoscopy videos using shape and context information. IEEE T Med Imaging, 2015, 35(2): 630-644.
|
| 10. |
Jha D, Smedsrud P H, Riegler M A, et al. Kvasir-SEG: A segmented polyp dataset// International Conference on Multimedia Modeling. Cham: Springer International Publishing, 2019: 451-462.
|
| 11. |
Vázquez D, Bernal J, Sánchez F J, et al. A benchmark for endoluminal scene segmentation of colonoscopy images. J Healthc Eng, 2017, 2017(1): 4037190.
|
| 12. |
Xu Y, Quan R, Xu W, et al. Advances in medical image segmentation: A comprehensive review of traditional, deep learning and hybrid approache. Bioengineering, 2024, 11(10): 1034.
|
| 13. |
劉佳偉, 劉巧紅, 李曉歐, 等. 一種改進的雙U型網絡的結腸息肉分割方法. 光學學報, 2021, 41(18): 72-80.
|
| 14. |
Yeung M, Sala E, Sch?nlieb C B, et al. Focus U-Net: A novel dual attention-gated CNN for polyp segmentation during colonoscopy. Comput Biol Med, 2021, 137: 104815.
|
| 15. |
Tomar N K, Jha D, Bagci U, et al. TGANet: Text-guided attention for improved polyp segmentation// International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2022: 151-160.
|
| 16. |
Wang H, Cao P, Wang J, et al. UCTransNet: rethinking the skip connections in U-Net from a channel-wise perspective with transformer// Proceedings of the AAAI Conference on Artificial Intelligence. Virtual Conference: AAAI, 2022: 2441-2449.
|
| 17. |
Zhou Z, Rahman Siddiquee M M, Tajbakhsh N, et al. UNet++: A nested U-Net architecture for medical image segmentation// International Workshop on Deep Learning in Medical Image Analysis. Cham: Springer International Publishing, 2018: 3-11.
|
| 18. |
Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4700-4708.
|
| 19. |
Tomar N K, Jha D, Ali S, et al. DDANet: Dual decoder attention network for automatic polyp segmentation// International Conference on Pattern Recognition. Cham: Springer International Publishing, 2021: 307-314.
|
| 20. |
Jha D, Smedsrud P H, Johansen D, et al. A comprehensive study on colorectal polyp segmentation with ResUNet++, conditional random field and test-time augmentation. IEEE J Biomed Health Inform, 2021, 25(6): 2029-2040.
|
| 21. |
Ramzan M, Raza M, Sharif M I, et al. Gastrointestinal tract polyp anomaly segmentation on colonoscopy images using graft-U-Net. J Pers Med, 2022, 12(9): 1459.
|
| 22. |
Punn N S, Agarwal S. Modality specific U-Net variants for biomedical image segmentation: a survey. Artif Intell Rev, 2022, 55(7): 5845-5889.
|
| 23. |
Jha D, Tomar N K, Sharma V, et al. TransNetR: transformer-based residual network for polyp segmentation with multi-center out-of-distribution testing// Medical Imaging with Deep Learning. Virtual Conference: PMLR, 2024: 1372-1384.
|
| 24. |
Guo Q, Fang X, Wang L, et al. Polyp segmentation of colonoscopy images by exploring the uncertain areas. IEEE Access, 2022, 10: 52971-52981.
|
| 25. |
梁禮明, 何安軍, 朱晨錕, 等. 融合Transformer和跨級相位感知的結腸息肉分割方法. 生物醫學工程學雜志, 2023, 40(2): 234-243.
|
| 26. |
Liu X, Song S. Attention combined pyramid vision transformer for polyp segmentation. Biomed Signal Proces, 2024, 89: 105792.
|
| 27. |
Park K B, Lee J Y. SwinE-Net: Hybrid deep learning approach to novel polyp segmentation using convolutional neural network and Swin Transformer. J Comput Des Eng, 2022, 9(2): 616-632.
|
| 28. |
梁禮明, 何安軍, 陽淵, 等. 基于Swin Transformer和圖形推理的結直腸息肉分割方法. 工程科學學報, 2024, 46(5): 897-907.
|
| 29. |
Oukdach Y, Garbaz A, Kerkaou Z, et al. UViT-SEG: an efficient ViT and U-net-based framework for accurate colorectal polyp segmentation in colonoscopy and WCE images. J Imaging Inform Med, 2024, 37(5): 2354-2374.
|
| 30. |
Pan S, Liu X, Xie N, et al. EG-TransUNet: a transformer-based U-Net with enhanced and guided models for biomedical image segmentation. BMC Bioinform, 2023, 24(1): 85.
|
| 31. |
Duc N T, Oanh N T, Thuy N T, et al. Colonformer: An efficient transformer based method for colon polyp segmentation. IEEE Access, 2022, 10: 80575-80586.
|
| 32. |
Zhang Y, Liu H, Hu Q. Transfuse: Fusing transformers and cnns for medical image segmentation// International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer International Publishing, 2021: 14-24.
|
| 33. |
Lin Y, Han X, Chen K, et al. CSwinDoubleU-Net: A double U-shaped network combined with convolution and Swin Transformer for colorectal polyp segmentation. Biomed Signal Proces, 2024, 89: 105749.
|
| 34. |
Mahmood T, Rehman A, Saba T, et al. Recent advancements and future prospects in active deep learning for medical image segmentation and classification. IEEE Access, 2023, 11: 113623-113652.
|
| 35. |
Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks. Commun Acm, 2020, 63(11): 139-144.
|