| 1. |
Ahmed M, Chen J, Arvin A, et al. The diamagnetic component map from quantitative susceptibility mapping (QSM) source separation reveals pathological alteration in Alzheimer's disease-driven neurodegeneration. NeuroImage, 2023, 280: 120357.
|
| 2. |
Padmapriya T, Sriramakrishnan P, Kalaiselvi T, et al. Advancements of MRI-based brain tumor segmentation from traditional to recent trends: a review. Curr Med Imaging, 2022, 18(12): 1261-1275.
|
| 3. |
Bian B, Hou L, Chai Y, et al. Visualizing the habenula using 3T high-resolution MP2RAGE and QSM: a preliminary study. Am J Neuroradiol, 2024, 45(4): 504-510.
|
| 4. |
Huang C, Li J, Liu C, et al. Investigation of brain iron levels in Chinese patients with Alzheimer's disease. Front Aging Neurosci, 2023, 15: 1168845.
|
| 5. |
Chen M, Wang Y, Zhang C, et al. Free water and iron content in the substantia nigra at different stages of Parkinson's disease. Eur J Radiol, 2023, 167: 111030.
|
| 6. |
王瑞奇, 詹逸珺, 裴建. 定量磁化率成像在阿爾茨海默病診斷及病程進展跟蹤中的應用研究. 磁共振成像, 2024, 15(5): 187-191.
|
| 7. |
Neupane B, Aryal J, Rajabifard A. Dual skip connections in U-Net, ResUnet and U-Net3+ for remote extraction of buildings. arXiv preprint, 2023, arXiv: 2303.09064.
|
| 8. |
Jebin B M, Shyla S I, Bel K N S, et al. Brain tumor detection and classification using U-Net and CNN with brain texture pattern analysis. Biomedical Signal Processing and Control, 2025, 110: 108156.
|
| 9. |
Gkotsoulias D G, J?ger C, Müller R, et al. Chaos and COSMOS-considerations on QSM methods with multiple and single orientations and effects from local anisotropy. Magn Reson Imaging, 2024, 110: 104-111.
|
| 10. |
Beljaards L, Pezzotti N, Rao C, et al. AI-based motion artifact severity estimation in undersampled MRI allowing for selection of appropriate reconstruction models. Med Phys, 2024, 51(5): 3555-3565.
|
| 11. |
Liu J, Koch K M. Meta-QSM: an image-resolution-arbitrary network for QSM reconstruction. arXiv preprint, 2019, arXiv: 1908.00206.
|
| 12. |
Gao Y, Zhu X, Moffat B A, et al. xQSM: quantitative susceptibility mapping with octave convolutional and noise‐regularized neural networks. NMR Biomed, 2021, 34(3): e4461.
|
| 13. |
Zhu X, Gao Y, Liu F, et al. BFRnet: a deep learning-based MR background field removal method for QSM of the brain containing significant pathological susceptibility sources. Z Med Phys, 2023, 33(4): 578-590.
|
| 14. |
Graf S, Wohlgemuth W A, Deistung A. Incorporating a-priori information in deep learning models for quantitative susceptibility mapping via adaptive convolution. Front Neurosci, 2024, 18: 1366165.
|
| 15. |
Gao Y, Xiong Z, Fazlollahi A, et al. Instant tissue field and magnetic susceptibility mapping from MRI raw phase using Laplacian enhanced deep neural networks. NeuroImage, 2022, 259: 119410.
|
| 16. |
Gao Y, Cloos M, Liu F, et al. Accelerating quantitative susceptibility and R2* mapping using incoherent undersampling and deep neural network reconstruction. NeuroImage, 2021, 240: 118404.
|
| 17. |
Si W, Guo Y, Zhang Q, et al. Quantitative susceptibility mapping using multi-channel convolutional neural networks with dipole-adaptive multi-frequency inputs. Front Neurosci, 2023, 17: 1165446.
|
| 18. |
馬靚怡, 喬志偉. 基于 Chambolle-Pock 框架的核 TV 多通道圖像重建算法. CT 理論與應用研究, 2022, 31(6): 731-747.
|
| 19. |
Zhang M, Li M, Zhou J, et al. High-dimensional embedding network derived prior for compressive sensing MRI reconstruction. Med Image Anal, 2020, 64: 101717.
|
| 20. |
Xiong Z, Gao Y, Liu Y, et al. Quantitative susceptibility mapping through model-based deep image prior (MoDIP). NeuroImage, 2024, 291: 120583.
|
| 21. |
Liu J, Koch K M. Model-based learning for quantitative susceptibility mapping. arXiv preprint, 2020, arXiv: 2004.06259.
|
| 22. |
Lai K W, Aggarwal M, van Zijl P, et al. Learned proximal networks for quantitative susceptibility mapping. Med Image Comput Comput Assist Interv, 2020, 12262: 125-135.
|
| 23. |
Venkatesh V, Mathew R S, Yalavarthy P K. Spinet-QSM: model-based deep learning with schatten p-norm regularization for improved quantitative susceptibility mapping. Magnetic Resonance Materials in Physics, Biology and Medicine, 2024, 37(3): 411-427.
|
| 24. |
Feng R, Zhao J, Wang H, et al. MoDL-QSM: model-based deep learning for quantitative susceptibility mapping. NeuroImage, 2021, 240: 118376.
|
| 25. |
Jung W, Yoon J, Ji S, et al. Exploring linearity of deep neural network trained QSM: QSMnet+. NeuroImage, 2020, 211: 116619.
|
| 26. |
Kan H, Uchida Y, Kawaguchi S, et al. Quantitative susceptibility mapping for susceptibility source separation with adaptive relaxometric constant estimation (QSM-ARCS) from solely gradient-echo data. NeuroImage, 2024, 296: 120676.
|
| 27. |
Gao Y, Xiong Z, Shan S, et al. Plug-and-play latent feature editing for orientation-adaptive quantitative susceptibility mapping neural networks. Medical Image Analysis, 2024, 94: 103160.
|
| 28. |
Xiong Z, Gao Y, Liu F, et al. Affine transformation edited and refined deep neural network for quantitative susceptibility mapping. NeuroImage, 2023, 267: 119842.
|
| 29. |
Li J, Wang W, Chen C, et al. TransBTSV2: towards better and more efficient volumetric segmentation of medical images. arXiv preprint, 2022, arXiv: 2201.12785.
|
| 30. |
Zhang X, Yang S, Jiang Y, et al. FAFS-UNet: redesigning skip connections in UNet with feature aggregation and feature selection. Computers in Biology and Medicine, 2024, 170: 108009.
|
| 31. |
Guan X, Zhao Y, Nyatega C O, et al. Brain tumor segmentation network with multi-view ensemble discrimination and kernel-sharing dilated convolution. Brain Sciences, 2023, 13(4): 650.
|
| 32. |
張奕涵, 柏正堯, 尤逸琳, 等. 自適應模態融合雙編碼器MRI腦腫瘤分割網絡. 中國圖象圖形學報, 2024, 29(3): 768-781.
|
| 33. |
Shi Y, Feng R, Li Z, et al. Towards in vivo ground truth susceptibility for single-orientation deep learning QSM: a multi-orientation gradient-echo MRI dataset. NeuroImage, 2022, 261: 119522.
|
| 34. |
趙艷紅, 張曉文, 張濤, 等. MRI定量磁化率成像(QSM)在帕金森病診斷中的應用研究. 影像研究與醫學應用, 2024, 8(10): 16-19.
|
| 35. |
Hanspach J, Bollmann S, Grigo J, et al. Deep learning-based quantitative susceptibility mapping (QSM) in the presence of fat using synthetically generated multi-echo phase training data. Magnetic Resonance in Medicine, 2022, 88(4): 1548-1560.
|
| 36. |
Bechler E, Stabinska J, Thiel T, et al. Feasibility of quantitative susceptibility mapping (QSM) of the human kidney. Magnetic Resonance Materials in Physics, Biology and Medicine, 2021, 34(3): 389-397.
|