| 1. |
|
| 2. |
|
| 3. |
Sabri K, Ells AL, Lee EY, et al. Retinopathy of prematurity: a global perspective and recent developments[J/OL]. Pediatrics, 2022, 150(3): e2021053924[2022-09-01]. https://pubmed.ncbi.nlm.nih.gov/35948728/. DOI: 10.1542/peds.2021-053924.
|
| 4. |
Nebbioso M, Franzone F, Lambiase A, et al. Oxidative stress implication in retinal diseases-a review[J/OL]. Antioxidants (Basel), 2022, 11(9): 1790[2022-09-10]. https://pubmed.ncbi.nlm.nih.gov/36139862/. DOI: 10.3390/antiox11091790.
|
| 5. |
Li C, Miao X, Li F, et al. Oxidative stress-related mechanisms and antioxidant therapy in diabetic retinopathy[J/OL]. Oxid Med Cell Longev, 2017, 2017: 9702820[2017-02-06]. https://pubmed.ncbi.nlm.nih.gov/28265339/. DOI: 10.1155/2017/9702820.
|
| 6. |
Wang X, Wang T, Lam E, et al. Ocular vascular diseases: from retinal immune privilege to inflammation[J/OL]. Int J Mol Sci, 2023, 24(15): 12090[2023-07-28]. https://pubmed.ncbi.nlm.nih.gov/37569464/. DOI: 10.3390/ijms241512090.
|
| 7. |
|
| 8. |
|
| 9. |
Ruan Y, Jiang S, Musayeva A, et al. Oxidative stress and vascular dysfunction in the retina: therapeutic strategies[J/OL]. Antioxidants (Basel), 2020, 9(8): 761[2020-08-17]. https://pubmed.ncbi.nlm.nih.gov/32824523/. DOI: 10.3390/antiox9080761.
|
| 10. |
Gericke A, Buonfiglio F. Physiological and pathophysiological relevance of nitric oxide synthases (NOS) in retinal blood vessels[J/OL]. Front Biosci (Landmark Ed), 2024, 29(5): 190[2024-05-16]. https://pubmed.ncbi.nlm.nih.gov/38812321/. DOI: 10.31083/j.fbl2905190.
|
| 11. |
|
| 12. |
Cung T, Wang H, Hartnett ME. The effects of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and erythropoietin, and their interactions in angiogenesis: implications in retinopathy of prematurity[J/OL]. Cells, 2022, 11(12): 1951[2022-06-17]. https://pubmed.ncbi.nlm.nih.gov/35741081/. DOI: 10.3390/cells11121951.
|
| 13. |
|
| 14. |
|
| 15. |
|
| 16. |
|
| 17. |
|
| 18. |
Wang J, Li M, Geng Z, et al. Role of oxidative stress in retinal disease and the early intervention strategies: a review[J/OL]. Oxid Med Cell Longev, 2022, 2022: 7836828[2022-10-14]. https://pubmed.ncbi.nlm.nih.gov/36275903/. DOI: 10.1155/2022/7836828.
|
| 19. |
|
| 20. |
|
| 21. |
|
| 22. |
Wang Q, Zhu M, Li W, et al. CBX7 promotes choroidal neovascularization by activating the HIF-1alpha/VEGF pathway in choroidal vascular endothelial cells[J/OL]. Exp Eye Res, 2024, 247: 110057[2024-08-22]. https://pubmed.ncbi.nlm.nih.gov/39179168/. DOI: 10.1016/j.exer.2024.110057.
|
| 23. |
Tsai AS, Chou HD, Ling XC, et al. Assessment and management of retinopathy of prematurity in the era of anti-vascular endothelial growth factor (VEGF)[J/OL]. Prog Retin Eye Res, 2022, 88: 101018[2021-11-09]. https://pubmed.ncbi.nlm.nih.gov/34763060/. DOI: 10.1016/j.preteyeres.2021.101018.
|
| 24. |
|
| 25. |
|
| 26. |
|
| 27. |
Graziosi A, Perrotta M, Russo D, et al. Oxidative stress markers and the retinopathy of prematurity[J/OL]. J Clin Med, 2020, 9(9): 2711[2020-08-21]. https://pubmed.ncbi.nlm.nih.gov/32825796/. DOI: 10.3390/jcm9092711.
|
| 28. |
Tsang JKW, Liu J, Lo ACY. Vascular and neuronal protection in the developing retina: potential therapeutic targets for retinopathy of prematurity[J/OL]. Int J Mol Sci, 2019, 20(17): 4321[2019-09-03]. https://pubmed.ncbi.nlm.nih.gov/31484463/. DOI: 10.3390/ijms20174321.
|
| 29. |
Romero-Maldonado S, Montoya-Estrada A, Reyes-Mu?oz E, et al. Efficacy of water-based vitamin E solution versus placebo in the prevention of retinopathy of prematurity in very low birth weight infants: a randomized clinical trial[J/OL]. Medicine (Baltimore), 2021, 100(31): e26765[2021-08-06]. https://pubmed.ncbi.nlm.nih.gov/34397821/. DOI: 10.1097/md.0000000000026765.
|
| 30. |
|
| 31. |
|
| 32. |
|
| 33. |
|
| 34. |
Chen S, Sun Q, Sun D, et al. C-CBL is required for inhibition of angiogenesis through modulating JAK2/STAT3 activity in ROP development[J/OL]. Biomed Pharmacother, 2020, 132: 110856[2020-10-28]. https://pubmed.ncbi.nlm.nih.gov/33125970/. DOI: 10.1016/j.biopha.2020.110856.
|
| 35. |
Ren J, Jiang J, Ou W, et al. The effect of STAT3 signal pathway activation on retinopathy of prematurity[J/OL]. Front Pediatr, 2021, 9: 638432[2021-11-10]. https://pubmed.ncbi.nlm.nih.gov/34858895/. DOI: 10.3389/fped.2021.638432.
|
| 36. |
Chen S, Zhang J, Sun D, et al. SYVN1 promotes STAT3 protein ubiquitination and exerts antiangiogenesis effects in retinopathy of prematurity development[J/OL]. Invest Ophthalmol Vis Sci, 2023, 64(11): 8[2023-08-01]. https://pubmed.ncbi.nlm.nih.gov/37540175/. DOI: 10.1167/iovs.64.11.8.
|
| 37. |
|
| 38. |
|
| 39. |
Huang YH, Kuo CH, Peng IC, et al. Recombinant thrombomodulin domain 1 rescues pathological angiogenesis by inhibition of HIF-1alpha-VEGF pathway[J]. Cell Mol Life Sci, 78(23): 7681-7692. DOI: 10.1007/s00018-021-03950-3.
|
| 40. |
Zhang L, Buonfiglio F, Fie? A, et al. Retinopathy of prematurity-targeting hypoxic and redox signaling pathways[J/OL]. Antioxidants (Basel), 2024, 13(2): 148[2024-01-25]. https://pubmed.ncbi.nlm.nih.gov/38397746/. DOI: 10.3390/antiox13020148.
|
| 41. |
|
| 42. |
|
| 43. |
|
| 44. |
|
| 45. |
|
| 46. |
Chor?ziak-Michalak A, Szpecht D, Chmielarz-Czarnocińska A, et al. Comprehensive analysis of the role of gene variants in matrix metalloproteinases and their tissue inhibitors in retinopathy of prematurity: a study in the polish population[J/OL]. Int J Mol Sci, 2023, 24(20): 15309[2023-10-18]. https://pubmed.ncbi.nlm.nih.gov/37894989/. DOI: 10.3390/ijms242015309.
|
| 47. |
Wu PL, Ling XC, Kang EY, et al. Effects of TIMP-2 polymorphisms on retinopathy of prematurity risk, severity, recurrence, and treatment response[J/OL]. Int J Mol Sci, 2022, 23(22): 14199[2022-11-17]. https://pubmed.ncbi.nlm.nih.gov/36430677/. DOI: 10.3390/ijms232214199.
|
| 48. |
|
| 49. |
|