| 1. |
|
| 2. |
|
| 3. |
|
| 4. |
|
| 5. |
|
| 6. |
|
| 7. |
|
| 8. |
Wong KA, Benowitz LI. Retinal ganglion cell survival and axon regeneration after optic nerve injury: role of inflammation and other factors[J/OL]. Int J Mol Sci, 2022, 23(17): 10179[2022-09-05]. https://pubmed.ncbi.nlm.nih.gov/36077577/. DOI: 10.3390/ijms231710179.
|
| 9. |
Martínez-Gil N, Maneu V, Kutsyr O, et al. Cellular and molecular alterations in neurons and glial cells in inherited retinal degeneration[J/OL]. Front Neuroanat, 2022, 16: 984052[2022-09-26]. https://pubmed.ncbi.nlm.nih.gov/36225228/. DOI: 10.3389/fnana.2022.984052.
|
| 10. |
Conedera FM, Pousa AMQ, Mercader N, et al. The TGFβ/Notch axis facilitates Müller cell-to-epithelial transition to ultimately form a chronic glial scar[J/OL]. Mol Neurodegener, 2021, 16(1): 69[2021-09-30]. https://pubmed.ncbi.nlm.nih.gov/34593012/. DOI: 10.1186/s13024-021-00482-z.
|
| 11. |
|
| 12. |
Huang X, Luodan A, Gao H, et al. Mitochondrial transfer between BMSCs and Müller promotes mitochondrial fusion and suppresses gliosis in degenerative retina[J/OL]. iScience, 2024, 27(7): 110309[2024-06-20]. https://pubmed.ncbi.nlm.nih.gov/39055937/. DOI: 10.1016/j.isci.2024.110309.
|
| 13. |
Wong TY, Cheung CM, Larsen M, et al. Diabetic retinopathy[J/OL]. Nat Rev Dis Primers, 2016, 2: 16012[2016-04-17]. https://pubmed.ncbi.nlm.nih.gov/27159554/. DOI: 10.1038/nrdp.2016.12.
|
| 14. |
|
| 15. |
Lai D, Wu Y, Shao C, et al. The role of Müller cells in diabetic macular edema[J/OL]. Invest Ophthalmol Vis Sci, 2023, 64(10): 8[2023-07-03]. https://pubmed.ncbi.nlm.nih.gov/37418272/. DOI: 10.1167/iovs.64.10.8.
|
| 16. |
|
| 17. |
Li X, Li B, Feng D, et al. Upregulation of SQSTM1 regulates ferroptosis and oxidative stress in Müller cells of the diabetic neural retina by modulating ACSL4[J/OL]. J Diabetes Res, 2025, 2025: 1924668[2025-08-13]. https://pubmed.ncbi.nlm.nih.gov/40843317/. DOI: 10.1155/jdr/1924668.
|
| 18. |
|
| 19. |
|
| 20. |
|
| 21. |
|
| 22. |
Bringmann A, Unterlauft JD, Barth T, et al. Müller cells and astrocytes in tractional macular disorders[J/OL]. Prog Retin Eye Res, 2022, 86: 100977[2021-06-05]. https://pubmed.ncbi.nlm.nih.gov/34102317/. DOI: 10.1016/j.preteyeres.2021.100977.
|
| 23. |
Lucchesi M, Di Marsico L, Guidotti L, et al. Hypoxia-dependent upregulation of VEGF relies on β3-adrenoceptor signaling in human retinal endothelial and Müller cells[J/OL]. Int J Mol Sci, 2025, 26(9): 4043[2025-04-24]. https://pubmed.ncbi.nlm.nih.gov/40362282/. DOI: 10.3390/ijms26094043.
|
| 24. |
Yao X, Li Z, Lei Y, et al. Single-cell multiomics profiling reveals heterogeneity of Müller cells in the oxygen-induced retinopathy model[J/OL]. Invest Ophthalmol Vis Sci, 2024, 65(13): 8[2024-11-04]. https://pubmed.ncbi.nlm.nih.gov/39504047/. DOI: 10.1167/iovs.65.13.8.
|
| 25. |
Shi S, Xia F, Lu Z, et al. Epac1 deletion attenuates Müller glial pathological activation and mitigates retinal neurodegeneration in ischemia-induced retinopathy[J/OL]. J Adv Res, 2025, 19: S2090-1232(25)00735-0[2025-09-19]. https://pubmed.ncbi.nlm.nih.gov/40976555/. DOI: 10.1016/j.jare.2025.09.031.
|
| 26. |
Mansour AM, Gad MS, Habib S, et al. Bidirectional hypoxic extracellular vesicle signaling between Müller glia and retinal pigment epithelium regulates retinal metabolism and barrier function[J/OL]. Biology (Basel), 2025, 14(8): 1014[2025-08-07]. https://pubmed.ncbi.nlm.nih.gov/40906190/. DOI: 10.3390/biology14081014.
|
| 27. |
|
| 28. |
Masson EAY, Serrano J, Leger-Charnay E, et al. Cholesterol and oxysterols in retinal neuron-glia interactions: relevance for glaucoma[J/OL]. Front Ophthalmol (Lausanne), 2024, 3: 1303649[2024-01-03]. https://pubmed.ncbi.nlm.nih.gov/38983043/. DOI: 10.3389/fopht.2023.1303649.
|
| 29. |
Hu X, Zhao GL, Xu MX, et al. Interplay between Müller cells and microglia aggravates retinal inflammatory response in experimental glaucoma[J/OL]. J Neuroinflammation, 2021, 18(1): 303[2021-12-24]. https://pubmed.ncbi.nlm.nih.gov/34952606/. DOI: 10.1186/s12974-021-02366-x.
|
| 30. |
Wójcik-Gryciuk A, Gajewska-Wo?niak O, Kordecka K, et al. Neuroprotection of retinal ganglion cells with AAV2-BDNF pretreatment restoring normal TrkB receptor protein levels in glaucoma[J/OL]. Int J Mol Sci, 2020, 21(17): 6262[2020-08-29]. https://pubmed.ncbi.nlm.nih.gov/32872441/. DOI: 10.3390/ijms21176262.
|
| 31. |
Shinozaki Y, Namekata K, Guo X, et al. Glial cells as a promising therapeutic target of glaucoma: beyond the IOP[J/OL]. Front Ophthalmol (Lausanne), 2024, 3: 1310226[2024-01-08]. https://pubmed.ncbi.nlm.nih.gov/38983026/. DOI: 10.3389/fopht.2023.1310226.
|
| 32. |
|
| 33. |
|
| 34. |
Zhang H, Guo Y, Yang Y, et al. MAP4Ks inhibition promotes retinal neuron regeneration from Müller glia in adult mice[J/OL]. NPJ Regen Med, 2023, 8(1): 36[2023-07-13]. https://pubmed.ncbi.nlm.nih.gov/37443319/. DOI: 10.1038/s41536-023-00310-6.
|
| 35. |
|
| 36. |
Boudreau-Pinsonneault C, David LA, Louren?o Fernandes JA, et al. Direct neuronal reprogramming by temporal identity factors[J/OL]. Proc Natl Acad Sci USA, 2023, 120(19): e2122168120[2023-05-09]. https://pubmed.ncbi.nlm.nih.gov/37126716/. DOI: 10.1073/pnas.2122168120.
|
| 37. |
|
| 38. |
|
| 39. |
Hoang T, Wang J, Boyd P, et al. Gene regulatory networks controlling vertebrate retinal regeneration[J/OL]. Science, 2020, 370(6519): eabb8598[2020-11-20]. https://pubmed.ncbi.nlm.nih.gov/33004674/. DOI: 10.1126/science.abb8598.
|
| 40. |
|
| 41. |
Wang Y, Nusinowitz S, Yang XJ. Elevating Jak-STAT signaling via SOCS3 deletion sustains photoreceptor viability and visual function in mouse models of retinitis pigmentosa[J/OL]. Res Sq, 2025, 11: rs. 3. rs-7089882[2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/40671803/. DOI: 10.21203/rs.3.rs-7089882/v1.
|
| 42. |
|
| 43. |
Sharma P, Gupta S, Chaudhary M, et al. Biphasic role of Tgf-β signaling during Müller glia reprogramming and retinal regeneration in zebrafish[J/OL]. iScience, 2020, 23(2): 100817[2020-02-21]. https://pubmed.ncbi.nlm.nih.gov/32004993/. DOI: 10.1016/j.isci.2019.100817.
|
| 44. |
|
| 45. |
|
| 46. |
|
| 47. |
Martínez-Vacas A, Di Pierdomenico J, Valiente-Soriano FJ, et al. Glial cell activation and oxidative stress in retinal degeneration induced by β-alanine caused taurine depletion and light exposure[J/OL]. Int J Mol Sci, 2021, 23(1): 346[2021-12-29]. https://pubmed.ncbi.nlm.nih.gov/35008772/. DOI: 10.3390/ijms23010346.
|
| 48. |
Zhong L, Yang D, Han X, et al. Overexpressing neurogenic differentiation factor 1 in Müller cells improves retinal function after optic nerve crush injury in adult mice[J/OL]. Neural Regen Res, 2025, 2025: E1(2024-11-28)[2025-09-03]. https://pubmed.ncbi.nlm.nih.gov/40903948/. DOI: 10.4103/NRR.NRR-D-24-01144.[published online ahead of print].
|
| 49. |
Fu Z, Qiu C, Cagnone G, et al. Retinal glial remodeling by FGF21 preserves retinal function during photoreceptor degeneration[J/OL]. iScience, 2021, 24(4): 102376[2021-04-29]. https://pubmed.ncbi.nlm.nih.gov/33937726/. DOI: 10.1016/j.isci.2021.102376.
|
| 50. |
Xiao L, Huang Z, Wu Z, et al. Reconstitution of pluripotency from mouse fibroblast through Sall4 overexpression[J/OL]. Nat Commun, 2024, 15(1): 10787[2024-12-30]. https://pubmed.ncbi.nlm.nih.gov/39737935/. DOI: 10.1038/s41467-024-54924-5.
|