- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China;
Tissue plasminogen activator (t-PA), a serine protease capable of promoting fibrin degradation and thrombus dissolution, plays a pivotal role in the management of cardiovascular and cerebrovascular diseases. In recent years, its ophthalmic applications have expanded significantly. Intravitreal administration of t-PA demonstrates efficacy in inducing posterior vitreous detachment, thereby enhancing surgical success rates. Combined application with vitrectomy markedly improves outcomes in subretinal hemorrhage management. Systemic thrombolysis via intravenous or intra-arterial routes effectively alleviates central retinal artery occlusion, while suprachoroidal injection facilitates resolution of suprachoroidal hemorrhage. Notably, the synergistic effect of subretinal co-administration with anti-vascular endothelial growth factor agents enhances anti-angiogenic efficacy, offering novel therapeutic strategies for ocular neovascular disorders. In the future, it is necessary to further clarify the best indication of t-PA, improve the treatment scheme, and explore the combined application with other treatment methods to promote the innovation of ophthalmic treatment.
Citation: Tan Huang, Zhang Hui, Li Xiaorong. Research progress of tissue plasminogen activator in ophthalmic treatment. Chinese Journal of Ocular Fundus Diseases, 2025, 41(11): 894-900. doi: 10.3760/cma.j.cn511434-20250120-00032 Copy
Copyright ? the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
| 1. | |
| 2. | |
| 3. | |
| 4. | |
| 5. | |
| 6. | |
| 7. | |
| 8. | |
| 9. | 何香蓮. 增殖性糖尿病視網膜病變血漿和眼內組織VEGF與t-PA及PAI的表達及其相關性研究[D]. 銀川: 寧夏醫科大學, 2014.He XL. Expression and correlation of VEGF, t-PA and PAI in plasma and intraocular tissue of proliferative diabetic retinopathy[D]. Yinchuan: Ningxia Medical University, 2014. |
| 10. | Parmer RJ, Gong Y, Yoo SH, et al. Neuroendocrine targeting of tissue plasminogen activator (t-PA)[J/OL]. J Neurol Disord Stroke, 2020, 7(1): 1153[2020-02-12]. https://pubmed.ncbi.nlm.nih.gov/32549050/. |
| 11. | |
| 12. | |
| 13. | |
| 14. | |
| 15. | |
| 16. | |
| 17. | Tandias R, Lemire CA, Palvadi K, et al. Posterior vitreous detachment status as a predictive factor for outcomes of vitrectomy for diabetic vitreous hemorrhage[J]. Retina, 2022, 42(6): 1103-1110. DOI: 10.1097/IAE.0000000000003453. |
| 18. | Bu SC, Kuijer R, Van Der Worp RJ, et al. The ultrastructural localization of type Ⅱ, Ⅳ, and Ⅵ collagens at the vitreoretinal interface[J/OL]. PLoS One, 2015, 10(7): e0134325[2015-07-31]. https://pubmed.ncbi.nlm.nih.gov/26230410/. DOI: 10.1371/journal.pone.0134325. |
| 19. | Phillips JD, Hwang ES, Morgan DJ, et al. Structure and mechanics of the vitreoretinal interface[J/OL]. J Mech Behav Biomed Mater, 2022, 134: 105399[2022-08-05]. https://pubmed.ncbi.nlm.nih.gov/35963021/. DOI: 10.1016/j.jmbbm.2022.105399. |
| 20. | |
| 21. | |
| 22. | |
| 23. | |
| 24. | |
| 25. | |
| 26. | |
| 27. | |
| 28. | |
| 29. | |
| 30. | Liu RZ, Hu YJ, Wang TF, et al. A novel recombinant human microplasminogen induced complete posterior vitreous detachment without morphological change of retina in juvenile rabbits[J/OL]. Exp Eye Res, 2023, 230: 109465[2023-04-06]. https://pubmed.ncbi.nlm.nih.gov/37030582/. DOI: 10.1016/j.exer.2023.109465. |
| 31. | |
| 32. | |
| 33. | |
| 34. | Casini G, Loiudice P, Menchini M, et al. Traumatic submacular hemorrhage: available treatment options and synthesis of the literature[J/OL]. Int J Retina Vitreous, 2019, 5: 48[2019-12-11]. https://pubmed.ncbi.nlm.nih.gov/31890278/. DOI: 10.1186/s40942-019-0200-0. |
| 35. | Hattenbach LO, Grisanti S, Feltgen N, et al. Management of submacular hemorrhage: what, when, how?[J]. Ophthalmologe, 2020, 117(9): 848-857. DOI: 10.1007/s00347-020-01192-5. |
| 36. | |
| 37. | |
| 38. | Imam MU, Zhang S, Ma J, et al. Antioxidants mediate both iron homeostasis and oxidative stress[J/OL]. Nutrients, 2017, 9(7): 671[2017-06-28]. https://pubmed.ncbi.nlm.nih.gov/28657578/. DOI: 10.3390/nu9070671. |
| 39. | |
| 40. | |
| 41. | |
| 42. | Rickmann A, Paez LR, Della Volpe Waizel M, et al. Functional and structural outcome after vitrectomy combined with subretinal rtPA Injection with or without additional intravitreal Bevacizumab injection for submacular hemorrhages[J/OL]. PLoS One, 2021, 16(4): e0250587[2021-04-30]. https://pubmed.ncbi.nlm.nih.gov/33930041/. DOI: 10.1371/journal.pone.0250587. |
| 43. | |
| 44. | |
| 45. | |
| 46. | Kitagawa Y, Shimada H, Mori R, et al. One-year outcome of intravitreal tissue plasminogen activator, ranibizumab, and gas injections for submacular hemorrhage in polypoidal choroidal vasculopathy[J/OL]. J Clin Med, 2022, 11(8): 2175[2022-04-13]. https://pubmed.ncbi.nlm.nih.gov/35456268/. DOI: 10.3390/jcm11082175. |
| 47. | Pierre M, Mainguy A, Chatziralli I, et al. Macular hemorrhage due to age-related macular degeneration or retinal arterial macroaneurysm: predictive factors of surgical outcome[J/OL]. J Clin Med, 2021, 10(24): 5787[2021-12-10]. https://pubmed.ncbi.nlm.nih.gov/34945083/. DOI: 10.3390/jcm10245787. |
| 48. | |
| 49. | |
| 50. | Ogata M, Oh H, Nakata A, et al. Displacement of submacular hemorrhage secondary to age-related macular degeneration with subretinal injection of air and tissue plasminogen activator[J/OL]. Sci Rep, 2022, 12(1): 22139[2022-12-22]. https://pubmed.ncbi.nlm.nih.gov/36550175/. DOI: 10.1038/s41598-022-26289-6. |
| 51. | |
| 52. | |
| 53. | Ong J, Zarnegar A, Corradetti G, et al. Advances in optical coherence tomography imaging technology and techniques for choroidal and retinal disorders[J/OL]. J Clin Med, 2022, 11(17): 5139[2022-08-31]. https://pubmed.ncbi.nlm.nih.gov/36079077/. DOI: 10.3390/jcm11175139. |
| 54. | |
| 55. | |
| 56. | Ali Said Y, Dewilde E, Stalmans P. Visual outcome after vitrectomy with subretinal tpa injection to treat submacular hemorrhage secondary to age-related macular degeneration or macroaneurysm[J/OL]. J Ophthalmol, 2021, 2021: 3160963[2021-12-30]. https://pubmed.ncbi.nlm.nih.gov/35003789/. DOI: 10.1155/2021/3160963. |
| 57. | |
| 58. | |
| 59. | Bénard-Séguin é, Nahab F, Pendley AM, et al. Eye stroke protocol in in the emergency department[J/OL]. J Stroke Cerebrovasc Dis, 2024, 33(9): 107895[2024-07-28]. https://pubmed.ncbi.nlm.nih.gov/39079617/. DOI: 10.1016/j.jstrokecerebrovasdis.2024.107895. |
| 60. | |
| 61. | |
| 62. | |
| 63. | Mac Grory B, Schrag M, Biousse V, et al. Management of central retinal artery occlusion: a scientific statement from the american heart association[J/OL]. Stroke, 2021, 52(6): e282-e294[2021-04-08]. https://pubmed.ncbi.nlm.nih.gov/33677974/. DOI: 10.1161/STR.0000000000000366. |
| 64. | |
| 65. | |
| 66. | |
| 67. | |
| 68. | |
| 69. | Ko?ner P, Eichenmann L, Ceska Burdova M, et al. Long-term outcomes of intravenous fibrinolysis in central retinal artery occlusion[J/OL]. Sci Rep, 2023, 13(1): 20505[2023-11-22]. https://pubmed.ncbi.nlm.nih.gov/37993533/. DOI: 10.1038/s41598-023-47987-9. |
| 70. | Lin J C, Song S, Ng SM, et al. Interventions for acute non-arteritic central retinal artery occlusion[J/OL]. Cochrane Database Syst Rev, 2023, 1(1): Cd001989[2023-01-30]. https://pubmed.ncbi.nlm.nih.gov/36715340/. DOI: 10.1002/14651858.CD001989.pub3. |
| 71. | Tiwari V, Bagga SSJ, Prasad R, et al. A review of current literature on central retinal artery occlusion: its pathogenesis, clinical management, and treatment[J/OL]. Cureus, 2024, 16(3): e55814[2024-03-08]. https://pubmed.ncbi.nlm.nih.gov/38590501/. DOI: 10.7759/cureus.55814. |
| 72. | |
| 73. | |
| 74. | |
| 75. | |
| 76. | |
| 77. | |
| 78. | |
| 79. | |
| 80. | Yoshino H, Seki M, Ueda J, et al. Fibrin membrane pupillary-block glaucoma after uneventful cataract surgery treated with intracameral tissue plasminogen activator: a case report[J/OL]. BMC Ophthalmol, 2012, 12: 3[2021-04-20]. https://pubmed.ncbi.nlm.nih.gov/22433746/. DOI: 10.1186/1471-2415-12-3. |
| 81. |
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9. 何香蓮. 增殖性糖尿病視網膜病變血漿和眼內組織VEGF與t-PA及PAI的表達及其相關性研究[D]. 銀川: 寧夏醫科大學, 2014.He XL. Expression and correlation of VEGF, t-PA and PAI in plasma and intraocular tissue of proliferative diabetic retinopathy[D]. Yinchuan: Ningxia Medical University, 2014.
- 10. Parmer RJ, Gong Y, Yoo SH, et al. Neuroendocrine targeting of tissue plasminogen activator (t-PA)[J/OL]. J Neurol Disord Stroke, 2020, 7(1): 1153[2020-02-12]. https://pubmed.ncbi.nlm.nih.gov/32549050/.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17. Tandias R, Lemire CA, Palvadi K, et al. Posterior vitreous detachment status as a predictive factor for outcomes of vitrectomy for diabetic vitreous hemorrhage[J]. Retina, 2022, 42(6): 1103-1110. DOI: 10.1097/IAE.0000000000003453.
- 18. Bu SC, Kuijer R, Van Der Worp RJ, et al. The ultrastructural localization of type Ⅱ, Ⅳ, and Ⅵ collagens at the vitreoretinal interface[J/OL]. PLoS One, 2015, 10(7): e0134325[2015-07-31]. https://pubmed.ncbi.nlm.nih.gov/26230410/. DOI: 10.1371/journal.pone.0134325.
- 19. Phillips JD, Hwang ES, Morgan DJ, et al. Structure and mechanics of the vitreoretinal interface[J/OL]. J Mech Behav Biomed Mater, 2022, 134: 105399[2022-08-05]. https://pubmed.ncbi.nlm.nih.gov/35963021/. DOI: 10.1016/j.jmbbm.2022.105399.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30. Liu RZ, Hu YJ, Wang TF, et al. A novel recombinant human microplasminogen induced complete posterior vitreous detachment without morphological change of retina in juvenile rabbits[J/OL]. Exp Eye Res, 2023, 230: 109465[2023-04-06]. https://pubmed.ncbi.nlm.nih.gov/37030582/. DOI: 10.1016/j.exer.2023.109465.
- 31.
- 32.
- 33.
- 34. Casini G, Loiudice P, Menchini M, et al. Traumatic submacular hemorrhage: available treatment options and synthesis of the literature[J/OL]. Int J Retina Vitreous, 2019, 5: 48[2019-12-11]. https://pubmed.ncbi.nlm.nih.gov/31890278/. DOI: 10.1186/s40942-019-0200-0.
- 35. Hattenbach LO, Grisanti S, Feltgen N, et al. Management of submacular hemorrhage: what, when, how?[J]. Ophthalmologe, 2020, 117(9): 848-857. DOI: 10.1007/s00347-020-01192-5.
- 36.
- 37.
- 38. Imam MU, Zhang S, Ma J, et al. Antioxidants mediate both iron homeostasis and oxidative stress[J/OL]. Nutrients, 2017, 9(7): 671[2017-06-28]. https://pubmed.ncbi.nlm.nih.gov/28657578/. DOI: 10.3390/nu9070671.
- 39.
- 40.
- 41.
- 42. Rickmann A, Paez LR, Della Volpe Waizel M, et al. Functional and structural outcome after vitrectomy combined with subretinal rtPA Injection with or without additional intravitreal Bevacizumab injection for submacular hemorrhages[J/OL]. PLoS One, 2021, 16(4): e0250587[2021-04-30]. https://pubmed.ncbi.nlm.nih.gov/33930041/. DOI: 10.1371/journal.pone.0250587.
- 43.
- 44.
- 45.
- 46. Kitagawa Y, Shimada H, Mori R, et al. One-year outcome of intravitreal tissue plasminogen activator, ranibizumab, and gas injections for submacular hemorrhage in polypoidal choroidal vasculopathy[J/OL]. J Clin Med, 2022, 11(8): 2175[2022-04-13]. https://pubmed.ncbi.nlm.nih.gov/35456268/. DOI: 10.3390/jcm11082175.
- 47. Pierre M, Mainguy A, Chatziralli I, et al. Macular hemorrhage due to age-related macular degeneration or retinal arterial macroaneurysm: predictive factors of surgical outcome[J/OL]. J Clin Med, 2021, 10(24): 5787[2021-12-10]. https://pubmed.ncbi.nlm.nih.gov/34945083/. DOI: 10.3390/jcm10245787.
- 48.
- 49.
- 50. Ogata M, Oh H, Nakata A, et al. Displacement of submacular hemorrhage secondary to age-related macular degeneration with subretinal injection of air and tissue plasminogen activator[J/OL]. Sci Rep, 2022, 12(1): 22139[2022-12-22]. https://pubmed.ncbi.nlm.nih.gov/36550175/. DOI: 10.1038/s41598-022-26289-6.
- 51.
- 52.
- 53. Ong J, Zarnegar A, Corradetti G, et al. Advances in optical coherence tomography imaging technology and techniques for choroidal and retinal disorders[J/OL]. J Clin Med, 2022, 11(17): 5139[2022-08-31]. https://pubmed.ncbi.nlm.nih.gov/36079077/. DOI: 10.3390/jcm11175139.
- 54.
- 55.
- 56. Ali Said Y, Dewilde E, Stalmans P. Visual outcome after vitrectomy with subretinal tpa injection to treat submacular hemorrhage secondary to age-related macular degeneration or macroaneurysm[J/OL]. J Ophthalmol, 2021, 2021: 3160963[2021-12-30]. https://pubmed.ncbi.nlm.nih.gov/35003789/. DOI: 10.1155/2021/3160963.
- 57.
- 58.
- 59. Bénard-Séguin é, Nahab F, Pendley AM, et al. Eye stroke protocol in in the emergency department[J/OL]. J Stroke Cerebrovasc Dis, 2024, 33(9): 107895[2024-07-28]. https://pubmed.ncbi.nlm.nih.gov/39079617/. DOI: 10.1016/j.jstrokecerebrovasdis.2024.107895.
- 60.
- 61.
- 62.
- 63. Mac Grory B, Schrag M, Biousse V, et al. Management of central retinal artery occlusion: a scientific statement from the american heart association[J/OL]. Stroke, 2021, 52(6): e282-e294[2021-04-08]. https://pubmed.ncbi.nlm.nih.gov/33677974/. DOI: 10.1161/STR.0000000000000366.
- 64.
- 65.
- 66.
- 67.
- 68.
- 69. Ko?ner P, Eichenmann L, Ceska Burdova M, et al. Long-term outcomes of intravenous fibrinolysis in central retinal artery occlusion[J/OL]. Sci Rep, 2023, 13(1): 20505[2023-11-22]. https://pubmed.ncbi.nlm.nih.gov/37993533/. DOI: 10.1038/s41598-023-47987-9.
- 70. Lin J C, Song S, Ng SM, et al. Interventions for acute non-arteritic central retinal artery occlusion[J/OL]. Cochrane Database Syst Rev, 2023, 1(1): Cd001989[2023-01-30]. https://pubmed.ncbi.nlm.nih.gov/36715340/. DOI: 10.1002/14651858.CD001989.pub3.
- 71. Tiwari V, Bagga SSJ, Prasad R, et al. A review of current literature on central retinal artery occlusion: its pathogenesis, clinical management, and treatment[J/OL]. Cureus, 2024, 16(3): e55814[2024-03-08]. https://pubmed.ncbi.nlm.nih.gov/38590501/. DOI: 10.7759/cureus.55814.
- 72.
- 73.
- 74.
- 75.
- 76.
- 77.
- 78.
- 79.
- 80. Yoshino H, Seki M, Ueda J, et al. Fibrin membrane pupillary-block glaucoma after uneventful cataract surgery treated with intracameral tissue plasminogen activator: a case report[J/OL]. BMC Ophthalmol, 2012, 12: 3[2021-04-20]. https://pubmed.ncbi.nlm.nih.gov/22433746/. DOI: 10.1186/1471-2415-12-3.
- 81.

