• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "radiomics" 30 results
        • A model based on MRI radiomics features for prediction of microvascular invasion in hepatocellular carcinoma

          ObjectiveTo establish a model for predicting microvascular invasion (MVI) of hepatocellular carcinoma based on magnetic resonance imaging (MRI) radiomics features.MethodsThe clinical and pathological datas of 190 patients with hepatocellular carcinoma who received surgical treatment in our hospital from September 2017 to May 2020 were prospectively collected. The patients were randomly divided into training group (n=158) and test group (n=32) with a ratio of 5∶1. Gadoxetate disodium (Gd-EOB-DTPA) -enhanced MR images of arterial phase and hepatobiliary phase were used to select radiomics features through the region of interest (ROI). The ROI included the tumor lesions and the area dilating to 2 cm from the margin of the tumor. Based on a machine learning algorithm logistic, a radiomics model for predicting MVI of hepatocellular carcinoma was established in the training group, and the model was evaluated in the test group.ResultsSeven radiomics features were obtained. The area under the receiver operating characteristic curve (AUC) of the training group and the test group were 0.830 [95%CI (0.669, 0.811)] and 0.734 [95%CI (0.600, 0.936)], respectively.ConclusionThe model based on MRI radiomics features seems to be a promising approach for predicting the microvascular invasion of hepatocellular carcinoma, which is of clinical significance for the management of hepatocellular carcinoma treatment.

          Release date:2021-02-08 07:10 Export PDF Favorites Scan
        • Preliminary study on prediction model based on CT for pathological complete response of rectal cancer after neoadjuvant chemotherapy

          ObjectiveTo explore the value of a decision tree (DT) model based on CT for predicting pathological complete response (pCR) after neoadjuvant chemotherapy therapy (NACT) in patients with locally advanced rectal cancer (LARC).MethodsThe clinical data and DICOM images of CT examination of 244 patients who underwent radical surgery after the NACT from October 2016 to March 2019 in the Database from Colorectal Cancer (DACCA) in the West China Hospital were retrospectively analyzed. The ITK-SNAP software was used to select the largest level of tumor and sketch the region of interest. By using a random allocation software, 200 patients were allocated into the training set and 44 patients were allocated into the test set. The MATLAB software was used to read the CT images in DICOM format and extract and select radiomics features. Then these reduced-dimensions features were used to construct the prediction model. Finally, the receiver operating characteristic (ROC) curve, area under the ROC curve (AUC), sensitivity, and specificity values were used to evaluate the prediction model.ResultsAccording to the postoperative pathological tumor regression grade (TRG) classification, there were 28 cases in the pCR group (TRG0) and 216 cases in the non-pCR group (TRG1–TRG3). The outcomes of patients with LARC after NACT were highly correlated with 13 radiomics features based on CT (6 grayscale features: mean, variance, deviation, skewness, kurtosis, energy; 3 texture features: contrast, correlation, homogeneity; 4 shape features: perimeter, diameter, area, shape). The AUC value of DT model based on CT was 0.772 [95% CI (0.656, 0.888)] for predicting pCR after the NACT in the patients with LARC. The accuracy of prediction was higher for the non-PCR patients (97.2%), but lower for the pCR patients (57.1%).ConclusionsIn this preliminary study, the DT model based on CT shows a lower prediction efficiency in judging pCR patient with LARC before operation as compared with homogeneity researches, so a more accurate prediction model of pCR patient will be optimized through advancing algorithm, expanding data set, and digging up more radiomics features.

          Release date:2020-06-04 02:30 Export PDF Favorites Scan
        • Research progress of auxiliary diagnosis classification algorithm for lung tumor imaging

          The classification of lung tumor with the help of computer-aided diagnosis system is very important for the early diagnosis and treatment of malignant lung tumors. At present, the main research direction of lung tumor classification is the model fusion technology based on deep learning, which classifies the multiple fusion data of lung tumor with the help of radiomics. This paper summarizes the commonly used research algorithms for lung tumor classification, introduces concepts and technologies of machine learning, radiomics, deep learning and multiple data fusion, points out the existing problems and difficulties in the field of lung tumor classification, and looks forward to the development prospect and future research direction of lung tumor classification.

          Release date:2022-07-28 10:21 Export PDF Favorites Scan
        • Application status and prospects of radiomics in diagnosis and treatment of biliary tract cancer

          Biliary tract cancer is characterized by occult onset, highly malignancy and poor prognosis. Traditional medical imaging is an important tool for surgical strategies and prognostic assessment, but it can no longer meet the urgent need for accurate and individualized treatment in patients with biliary tract cancer. With the advent of the digital imaging era, the advancement of artificial intelligence technology has given a new vitality to digital imaging, and provided more possibilities for the development of medical imaging in clinical applications. The application of radiomics in the diagnosis and differential diagnosis of benign and malignant tumors of biliary tract, assessment of lymph node status, early recurrence and prognosis assessment provides new means for the diagnosis and treatment of patients with biliary tract cancer.

          Release date:2023-02-02 08:55 Export PDF Favorites Scan
        • Progress in abdominal aortic aneurysm based on artificial intelligence and radiomics

          Objective To review the progress of artificial intelligence (AI) and radiomics in the study of abdominal aortic aneurysm (AAA). Method The literatures related to AI, radiomics and AAA research in recent years were collected and summarized in detail. Results AI and radiomics influenced AAA research and clinical decisions in terms of feature extraction, risk prediction, patient management, simulation of stent-graft deployment, and data mining. Conclusion The application of AI and radiomics provides new ideas for AAA research and clinical decisions, and is expected to suggest personalized treatment and follow-up protocols to guide clinical practice, aiming to achieve precision medicine of AAA.

          Release date:2022-09-20 01:53 Export PDF Favorites Scan
        • Machine learning-based radiomics model for risk stratification of severe asymptomatic carotid stenosis

          ObjectiveTo explore the utility of machine learning-based radiomics models for risk stratification of severe asymptomatic carotid stenosis (ACS). MethodsThe clinical data and head and neck CT angiography images of 188 patients with severe carotid artery stenosis at the Department of Cardiovascular Surgery, China-Japan Friendship Hospital from 2017 to 2021 were retrospectively collected. The patients were randomly divided into a training set (n=131, including 107 males and 24 females aged 68±8 years), and a validation set (n=57, including 50 males and 7 females aged 67±8 years). The volume of interest was manually outlined layer by layer along the edge of the carotid plaque on cross-section. Radiomics features were extracted using the Pyradiomics package of Python software. Intraclass and interclass correlation coefficient analysis, redundancy analysis, and least absolute shrinkage and selection operator regression analysis were used for feature selection. The selected radiomics features were constructed into a predictive model using 6 different supervised machine learning algorithms: logistic regression, decision tree, random forest, support vector machine, naive Bayes, and K nearest neighbor. The diagnostic efficacy of each prediction model was compared using the receiver operating characteristic (ROC) curve and the area under the curve (AUC), which were validated in the validation set. Calibration and clinical usefulness of the prediction model were evaluated using calibration curve and decision curve analysis (DCA). ResultsFour radiomics features were finally selected based on the training set for the construction of a predictive model. Among the 6 machine learning models, the logistic regression model exhibited higher and more stable diagnostic efficacy, with an AUC of 0.872, a sensitivity of 100.0%, and a specificity of 66.2% in the training set; the AUC, sensitivity and specificity in the validation set were 0.867, 83.3% and 78.8%, respectively. The calibration curve and DCA showed that the logistic regression model had good calibration and clinical usefulness. ConclusionThe machine learning-based radiomics model shows application value in the risk stratification of patients with severe ACS.

          Release date:2022-10-26 01:37 Export PDF Favorites Scan
        • Research progress on autoantibody liquid biopsy and AI-based radiomics in the diagnosis and treatment of non-small cell lung cancer

          Lung cancer has the highest incidence and mortality rates among malignant tumors both in China and worldwide, with approximately 85% of cases being non-small cell lung cancer (NSCLC). In the diagnosis and treatment of lung cancer, conventional imaging and tissue biopsy are often limited by insufficient sensitivity or invasive risks, making it difficult to meet the demands of future precision medicine. In recent years, artificial intelligence (AI)-based radiomics and autoantibody-based liquid biopsy have developed rapidly and have become major research focuses. AI radiomics significantly improves the accuracy of traditional imaging diagnosis by autonomously learning from large-scale imaging databases. Autoantibody liquid biopsy, on the other hand, utilizes tumor-associated autoantigens and antibodies as biomarkers, offering the advantages of being non-invasive, precise, efficient, and capable of reflecting spatiotemporal tumor heterogeneity, thereby demonstrating great potential in NSCLC diagnosis and treatment. This review summarizes recent research advances in autoantibody liquid biopsy and AI radiomics for the management of lung cancer.

          Release date: Export PDF Favorites Scan
        • Radiomics in diagnosis and treatment of hepatocellular carcinoma

          ObjectiveTo summarize the progress of radiomics in the diagnosis and treatment of hepatocellular carcinoma and discuss its future direction, limitations and challenges. MethodWe retrieved the literature related to radiomics in the diagnosis and treatment of hepatocellular carcinoma and made a review. ResultsTraditional hepatocellular carcinoma imaging examination, diagnosis and differential diagnosis had certain limitations. Radiomics as an emerging technology, it helped extract tissue biological information that could not be detected by the naked eye from high-throughput quantitative images and transform into high-dimensional qualitative quantitative data, and either alone or in combination with other clinical and molecular data such as demographics, histology, genomics or proteomics or other clinical and molecular data to solve clinical problems, such as hepatocellular carcinoma diagnosis and differential diagnosis, staging and grading, therapeutic regimen development and predicting prognosis and survival after therapy, etc. At present, there were still several problems to be solved in radiomics, such as insufficient interpretability of the combined artificial intelligence-medical imaging approach, lack of uniform standards and lack of external validation, etc.ConclusionsThe study of radiomics in the diagnosis and treatment of hepatocellular carcinoma has been deepened and expanded to different degrees with great potential and application prospects. Radiomics brings greater benefits to the diagnosis, treatment and management of hepatocellular carcinoma patients, provides a new direction for optimizing medical decision-making and promoting the development of precision medicine. However, there are still some deficiencies and challenges to overcome in the radiomics technology and methods, which require extensive validation and optimization through further clinical trials.

          Release date:2025-02-08 09:34 Export PDF Favorites Scan
        • Progress in early identification of high-grade lung adenocarcinoma

          [Abstract]High-grade histologic subtypes of lung adenocarcinoma, such as micropapillary and solid patterns, are characterized by high invasiveness, increased risk of recurrence, and poor prognosis. Early preoperative identification of these subtypes is crucial for achieving individualized treatment and improving clinical outcomes. This review summarizes the clinical features, imaging manifestations, molecular mechanisms, and diagnostic advances related to these aggressive patterns. Studies have shown that micropapillary and solid subtypes are more common in male smokers, often present as solid nodules, and demonstrate strong predictive value in FDG-PET metabolic parameters and CT-based radiomics models. At the molecular level, EGFR mutations are more frequently observed in micropapillary types, whereas solid subtypes are often associated with high PD-L1 expression and TP53 mutations, indicating distinct therapeutic strategies for targeted and immunotherapies. In addition, serum markers such as CEA and CYFRA21-1, along with inflammatory indices like NLR and SII, may serve as auxiliary tools for subtype identification. Histologic subtypes of lung adenocarcinoma are evolving from descriptive classifications into critical determinants of treatment decisions and precision management. Clinicians should incorporate comprehensive histologic evaluation into individualized therapeutic planning. Multimodal integration technologies, combined with artificial intelligence algorithms, are advancing the accurate preoperative prediction and management of high-risk subtypes, thereby facilitating early diagnosis and stratified treatment of lung adenocarcinoma.

          Release date: Export PDF Favorites Scan
        • Visual and quantitative assessment of the effectiveness of non-vascularized bone grafting in osteonecrosis of the femoral head via CT-based radiomics and clinical data

          ObjectiveTo investigate the value of CT-based radiomics and clinical data in predicting the efficacy of non-vascularized bone grafting (NVBG) in hip preservation, and to construct a visual, quantifiable, and effective method for decision-making of hip preservation. Methods Between June 2009 and June 2019, 153 patients (182 hips) with osteonecrosis of the femoral head (ONFH) who underwent NVBG for hip preservation were included, and the training and testing sets were divided in a 7∶3 ratio to define hip preservation success or failure according to the 3-year postoperative follow-up. The radiomic features of the region of interest in the CT images were extracted, and the radiomics-scores were calculated by the linear weighting and coefficients of the radiomic features after dimensionality reduction. The clinical predictors were screened using univariate and multivariate Cox regression analysis. The radiomics model, clinical model, and clinical-radiomics (C-R) model were constructed respectively. Their predictive performance for the efficacy of hip preservation was compared in the training and testing sets, with evaluation indexes including area under the curve, C-Index, sensitivity, specificity, and calibration curve, etc. The best model was visualised using nomogram, and its clinical utility was assessed by decision curves. ResultsAt the 3-year postoperative follow-up, the cumulative survival rate of hip preservation was 70.33%. Continued exposure to risk factors postoperative and Japanese Investigation Committee (JIC) staging were clinical predictors of the efficacy of hip preservation, and 13 radiomic features derived from least absolute shrinkage and selection operator downscaling were used to calculate Rad-scores. The C-R model outperformed both the clinical and radiomics models in predicting the efficacy of hip preservation 1, 2, 3 years postoperative in both the training and testing sets (P<0.05), with good agreement between the predicted and observed values. A nomogram constructed based on the C-R model showed that patients with lower Rad-scores, no further postoperative exposure to risk factors, and B or C1 types of JIC staging had a higher probability of femoral survival at 1, 2, 3 years postoperatively. The decision curve analysis showed that the C-R model had a higher total net benefit than both the clinical and radiomics models with a single predictor, and it could bring more net benefit to patients within a larger probability threshold. Conclusion The prediction model and nomogram constructed by CT-based radiomics combined with clinical data is a visual, quantifiable, and effective method for decision-making of hip preservation, which can predict the efficacy of NVBG before surgery and has a high value of clinical application.

          Release date:2023-07-12 09:34 Export PDF Favorites Scan
        3 pages Previous 1 2 3 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜