• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "noninvasive ventilation" 3 results
        • Effect of different nebulization methods in acute exacerbations of chronic obstructive pulmonary disease requiring non-invasive ventilation

          ObjectiveTo analyze the effect of different nebulization methods in patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD) requiring non-invasive ventilators (NIV). MethodsOne hundred and two patients with AECOPD were selected according to the standard, and randomly divided into a control group, a trial group I, and a trial group II according to the random number table. The patients in the control group received NIV intermittent oxygen-driven nebulization; the patients in the trial group I received NIV simultaneous oxygen-driven nebulization; and the patients in the trial group II received NIV simultaneous air-driven nebulization. The dynamic fluctuations of transcutaneous partial pressure of carbon dioxide (PtCO2), arterial blood gas indexes (PaCO2, PaO2, pH), vital signs and pulse oxygen saturation (SpO2) fluctuations were compared. ResultsPtCO2 at 15min of nebulization in the trial group II were lower than the other groups (P<0.05). PtCO2 at 15min of nebulization was higher than the other time points in the control group (P<0.05); there was no statistical difference of PtCO2 at different time points in the trial group I (P>0.05); PtCO2 gradually decreased with time in the trial group II (P<0.05). The difference before and after nebulization of PtCO2 (dPtCO2) was larger in trial group II than the other groups (P<0.05). PtCO2 at 0min and 5min after the end of nebulization in trial group II were lower than the other groups (P<0.05); there were no statistical differences of PtCO2 at 10min and 15min after the end of nebulization among three groups (P>0.05). There were statistical differences of the PtCO2 at each time point in the control group except for the PtCO2 at 10 min and 15min after the end of nebulization, all of which decreased with time; PtCO2 at each time points of nebulization decreased with time in the trial group I (P<0.05). PtCO2 only at 5min after the end of nebulization was lower than that at 0min after the end of nebulization in trial group II (P< 0.05), there were no statistical differences in other times (P>0.05). PaCO2, pH at the 4th day of treatment was lower than the pre-treatment in the control group (P<0.01); there were statistical differences of PaCO2 between the pre-treatment and the rest time points in the trial group I and group II (P<0.05). The number of abnormal fluctuations in vital signs and SpO2 during nebulization in three groups was not statistically different (P>0.05). ConclusionsThree groups can achieve good therapeutic effects. NIV intermittent oxygen-driven nebulization can make PtCO2 rise during nebulization; NIV simultaneous oxygen-driven nebulization can make PtCO2 remain stable during nebulization; NIV simultaneous air-driven nebulization can make PtCO2 fall during nebulization.

          Release date:2023-12-07 04:39 Export PDF Favorites Scan
        • Expert consensus on technical specifications for home non-invasive ventilation

          In China, chronic respiratory diseases (CRD) are characterized by high prevalence, disability rate, and mortality rate, imposing a severe disease burden. Home non-invasive ventilation (HNIV) therapy can improve ventilation, alleviate respiratory muscle fatigue, enhance oxygenation and carbon dioxide retention, delay the progression of various CRD, and even improve survival. However, there is currently a lack of long-term management standards and standardized guidance for patients receiving HNIV therapy in China. The Respiratory Therapy Group of the Chinese thoracic Society and Chinese Association of Rehabilitation Medicine, has summarized 11 questions related to HNIV for different diseases, answered various questions, and put forward modification suggestions. This consensus aims to provide references for frontline clinical staff, promote the standardization of HNIV application in China, and improve the level of treatment.Summary of recommendationsQuestion 1. For which patients is HNIV suitable?Recommendation: HNIV is recommended for patients with ventilatory dysfunction due to various causes, such as: obstructive sleep apnea syndrome [high-quality evidence, strong recommendation], chronic obstructive pulmonary disease [high/moderate-quality evidence, strong recommendation], obesity hypoventilation syndrome [moderate/low-quality evidence, strong recommendation], and neuromuscular diseases [low-quality evidence, strong recommendation].Question 2. When should HNIV be initiated?Recommendation: The timing for initiating HNIV therapy should be based on a comprehensive assessment of disease diagnosis, severity, symptoms, and comorbidities. Early standardized intervention is a crucial measure for improving prognosis and reducing long-term disease burden. Specific recommended indications are listed in Table 2. [high/moderate quality evidence, strong recommendation]Question 3. How should health education on HNIV be conducted?Recommendation: All HNIV patients should receive educational training. The five-step training method is recommended as the preferred approach for educating HNIV patients and their families. [Moderate-quality evidence, weak recommendation]Question 4. How to properly select a home non-invasive ventilator?Recommendations: When selecting a home non-invasive ventilator, patients should first consult a professional physician or respiratory therapist to obtain specialized advice based on their specific condition. Physicians should make decisions by comprehensively considering the patient’s disease type and severity, ventilator modes and parameters, synchrony, comfort, remote monitoring requirements, and financial circumstances. Refer to Table 3 for ventilation mode selection based on different diseases.Question 5. How should accessories for HNIV be selected?Recommendation: Mask selection should be based on disease type, dynamic assessment of the patient’s breathing pattern, and patient preference, with regular reassessment of fit during follow-up [High/moderate-quality evidence, strong recommendation]. Active heated humidifiers are recommended as the first choice for HNIV patients [Low-quality evidence, weak recommendation].Question 6. How should HNIV parameters be set and adjusted?Recommendation: Parameter adjustments should be performed in hospital and community settings. Long-term home use should only commence after confirming appropriate and safe settings. Avoid patients or caregivers making arbitrary adjustments that may cause adverse events. [Moderate-quality evidence, strong recommendation]Pressure settings for NIV should be tailored to the patient’s underlying disease and clinical objectives. Additional parameters including backup rate, inspiratory sensitivity, pressure rise time, and expiratory sensitivity must also be configured. The setup process is summarized in Figure 1. [Moderate-quality evidence, strong recommendation]Question 7. What is the recommended daily usage duration for HNIV?Recommendation: For patients using HNIV due to sleep apnea or sleep-related hypoventilation, it is recommended to use the device for at least 4 hours daily on more than 70% of nights, with usage duration covering sleep periods as much as possible. For patients using HNIV due to chronic hypercapnia, daily use of at least 5 - 6 hours is required, with priority given to nighttime use. [Low-quality evidence, weak recommendation]Question 8. When should respiratory support be adjusted during HNIV?Recommendation: Assess the efficacy of HNIV based on clinical and physiological criteria to determine whether to continue ventilatory support [Moderate-quality evidence, strong recommendation]. If disease progression or complications arise, and HNIV can no longer maintain effective ventilation, discontinue HNIV and seek hospital care promptly [Low-quality evidence, strong recommendation]. HNIV should not be discontinued in patients requiring intermittent or continuous HNIV during exercise [Moderate-quality evidence, strong recommendation].Question 9. How should complications associated with HNIV be managed?Recommendation: Common complications of noninvasive ventilation include skin pressure injury, air leak, patient-ventilator asynchrony, and thick sputum. These should be actively prevented and managed during HNIV. [Moderate-quality evidence, strong recommendation]Question 10. How should the effectiveness of HNIV be assessed and followed up?Recommendation: Close monitoring and follow-up are recommended for patients receiving home noninvasive ventilation. Monitoring indicators and follow-up frequency are summarized in Table 6. [Moderate-quality evidence, GPS]Question 11. How should the management pathway for HNIV be established and optimized?Recommendations: Establish a tiered, dynamic, and individualized HNIV management pathway based on patient condition characteristics, technical support availability, and home care capabilities: ① For high-risk acute exacerbation/unstable patients: Primarily use the traditional "hospital-community-home" model supplemented by self-management; for low-risk acute exacerbation/stable patients: Primarily use self-management with IoT-based remote monitoring where feasible. ② Dynamically adjust based on disease stage: intensify in-person training during the initial phase and gradually transition to remote monitoring during the stable phase; ③ Promote multidisciplinary collaboration, utilize smart devices for real-time monitoring, and ensure data security; ④ Enhance patient self-management capabilities through standardized education and regular follow-ups. [Low-quality evidence, GPS]

          Release date:2025-09-22 05:48 Export PDF Favorites Scan
        • Effects of sequential noninvasive ventilation combined with high-flow nasal cannula oxygen therapy after extubation in patients with acute exacerbation of chronic obstructive pulmonary disease: a retrospective cohort study

          Objective To investigate the efficacy and safety of noninvasive ventilation (NIV) combined with high-flow nasal cannula oxygen therapy (HFNC) versus NIV as sequential post-extubation therapy in patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD). Methods This retrospective cohort study enrolled AECOPD patients managed with invasive mechanical ventilation and sequential post-extubation therapy at West China Hospital of Sichuan University from January 2021 to September 2024. The patients were divided into a NIV group and a NIV-HFNC group based on sequential therapy modality. Outcomes included blood gas parameters (at 24h and 48h post-extubation), 7-day delirium incidence post-extubation, 7-day reintubation rate, 28-day mortality, NIV duration, intensive care unit (ICU) length of stay and hospital length of stay. Subgroup analyses were performed for the patients not reintubated within 48h post-extubation. Results A total of 156 patients were included, with 81 patients in the NIV group and 75 patients in the NIV-HFNC group. At 24h and 48h post-extubation, the NIV-HFNC group showed significantly lower PaCO2 (t=3.123, P=0.002; t=4.791, P<0.001) and HCO3– (t=2.313, P=0.022; t=4.605, P<0.001) levels, while pH (t=–2.287, P=0.024) at 48h was significantly higher than that in the NIV group. The 7-day reintubation rate (χ2=14.381, P<0.001) and the NIV duration (z=–3.495, P<0.001) were both significantly lower in the NIV-HFNC group than those in the NIV group. No significant differences were observed in 7-day delirium incidence, 28-day mortality, ICU or hospital length of stay (all P>0.05). Subgroup analyses showed that PaO2 at 48h post-extubation was significantly higher in the NIV-HFNC subgroup compared with the NIV subgroup (t=–2.390, P=0.018) while reintubation rate (χ2=4.693, P=0.030) and NIV duration (z=–4.936, P<0.001) were consistent with the overall results. Conclusion Compared with sequential NIV alone, NIV combined with HFNC as sequential therapy for AECOPD patients demonstrates superiority in improving post-extubation blood gas parameters, reducing reintubation rate and shortening NIV duration, offering a novel post-extubation respiratory support option to improve outcomes.

          Release date:2025-11-24 01:44 Export PDF Favorites Scan
        1 pages Previous 1 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜