• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "entropy" 41 results
        • Application of an Adaptive Inertia Weight Particle Swarm Algorithm in the Magnetic Resonance Bias Field Correction

          An adaptive inertia weight particle swarm algorithm is proposed in this study to solve the local optimal problem with the method of traditional particle swarm optimization in the process of estimating magnetic resonance (MR) image bias field. An indicator measuring the degree of premature convergence was designed for the defect of traditional particle swarm optimization algorithm. The inertia weight was adjusted adaptively based on this indicator to ensure particle swarm to be optimized globally and to avoid it from falling into local optimum. The Legendre polynomial was used to fit bias field, the polynomial parameters were optimized globally, and finally the bias field was estimated and corrected. Compared to those with the improved entropy minimum algorithm, the entropy of corrected image was smaller and the estimated bias field was more accurate in this study. Then the corrected image was segmented and the segmentation accuracy obtained in this research was 10% higher than that with improved entropy minimum algorithm. This algorithm can be applied to the correction of MR image bias field.

          Release date:2017-01-17 06:17 Export PDF Favorites Scan
        • Prediction of recurrence of paroxysmal atrial fibrillation based on RR interval

          Atrial fibrillation (AF) is one of the most common arrhythmias, which does great harm to patients. Effective methods were urgently required to prevent the recurrence of AF. Four methods were used to analyze RR sequence in this paper, and differences between Pre-AF (preceding an episode of AF) and Normal period (far away from episodes of AF) were analyzed to find discriminative criterion. These methods are: power spectral analysis, approximate entropy (ApEn) and sample entropy (SpEn) analysis, recurrence analysis and time series symbolization. The RR sequence data used in this research were downloaded from the Paroxysmal Atrial Fibrillation Prediction Database. Supporting vector machine (SVM) classification was used to evaluate the methods by calculating sensitivity, specificity and accuracy rate. The results showed that the comprehensive utilization of recurrence analysis parameters reached the highest accuracy rate (95%); power spectrum analysis took second place (90%); while the results of entropy analyses and time sequence symbolization were not satisfactory, whose accuracy were both only 70%. In conclusion, the recurrence analysis and power spectrum could be adopted to evaluate the atrial chaotic state effectively, thus having certain reference value for prediction of AF recurrence.

          Release date:2019-08-12 02:37 Export PDF Favorites Scan
        • Analysis of Electroencephalogram Sample Entropy Measurement in Frontal Association Cortex Based on Heroin-induced Conditioned Place Preference in Rats

          To explore the relationship between the drug-seeking behavior, motivation of conditioned place preference (CPP) rats and the frontal association cortex (FrA) electroencephalogram (EEG) sample entropy, we in this paper present our studies on the FrA EEG sample entropy of control group rats and CPP group rats, respectively. We invested different behavior in four situations of the rat activities, i.e. rats were staying in black chamber of videoed boxes, those staying in white chamber of videoed boxes, those shuttling between black-white chambers and those shuttling between white-black chambers. The experimental results showed that, compared with the control group rats, the FrA EEG sample entropy of CPP rats staying in black chamber of video box and shuttling between white-black chambers had no significant difference. However, sample entropy is significantly smaller (P < 0.01) when heroin-induced group rats stayed in white chamber of video box and shuttled between black-white chambers. Consequently, the drug-seeking behavior and motivation of CPP rats correlated closely with the EEG sample entropy changes.

          Release date: Export PDF Favorites Scan
        • Effect of music therapy on brain function of autistic children based on power spectrum and sample entropy

          This study aims to explore whether Guzheng playing training has a positive impact on the brain functional state of children with Autism Spectrum Disorder (ASD) based on power spectral and sample entropy analyses. Eight ASD participants were selected to undergo four months of Guzheng playing training, with one month as a training cycle. Electroencephalogram (EEG) signals and behavioral data were collected for comparative analysis. The results showed that after Guzheng playing training, the relative power of the alpha band in the occipital lobe of ASD children increased, and the relative power of the theta band in the parietal lobe decreased. The differences compared with typically developing (TD) children were narrowed. Moreover, some channels exhibited a gradual increase or decrease in power with the extended training period. Meanwhile, the sample entropy parameter also showed a similar upward trend, which was consistent with the behavioral data representation. The study shows that Guzheng training can enhance the brain function of ASD patients, with better effects from longer training. Guzheng playing training could be used as a daily intervention for autism.

          Release date:2025-06-23 04:09 Export PDF Favorites Scan
        • A heart sound classification method based on complete ensemble empirical modal decomposition with adaptive noise permutation entropy and support vector machine

          Heart sound signal is a kind of physiological signal with nonlinear and nonstationary features. In order to improve the accuracy and efficiency of the phonocardiogram (PCG) classification, a new method was proposed by means of support vector machine (SVM) in which the complete ensemble empirical modal decomposition with adaptive noise (CEEMDAN) permutation entropy was as the eigenvector of heart sound signal. Firstly, the PCG was decomposed by CEEMDAN into a number of intrinsic mode functions (IMFs) from high to low frequency. Secondly, the IMFs were sifted according to the correlation coefficient, energy factor and signal-to-noise ratio. Then the instantaneous frequency was extracted by Hilbert transform, and its permutation entropy was constituted into eigenvector. Finally, the accuracy of the method was verified by using a hundred PCG samples selected from the 2016 PhysioNet/CinC Challenge. The results showed that the accuracy rate of the proposed method could reach up to 87%. In comparison with the traditional EMD and EEMD permutation entropy methods, the accuracy rate was increased by 18%–24%, which demonstrates the efficiency of the proposed method.

          Release date:2022-06-28 04:35 Export PDF Favorites Scan
        • Research of Electroencephalogram for Sleep Stage Based on Collaborative Representation and Kernel Entropy Component Analysis

          Sleep quality is closely related to human health. It is very important to correctly discriminate the sleep stages for evaluating sleep quality, diagnosing and analyzing the sleep-related disorders. Polysomnography (PSG) signals are commonly used to record and analyze sleep stages. Effective feature extraction and representation is one of the most important steps to improve the performance of sleep stage classification. In this work, a collaborative representation (CR) algorithm was adopted to re-represent the original extracted features from electroencephalogram signal, and then the kernel entropy component analysis (KECA) algorithm was further used to reduce the feature dimension of CR-feature. To evaluate the performance of CR-KECA, we compared the original feature, CR feature and readied CR feature (CR-PCA) after principal component analysis (PCA). The experimental results of sleep stage classification indicated that the CR-KECA method achieved the best performance compared with the original feature, CR feature, and CR-PCA feature with the classification accuracy of 68.74±0.46%, sensitivity of 68.76±0.43% and specificity of 92.19±0.11%. Moreover, CR algorithm had low computational complexity, and the feature dimension after KECA was much smaller, which made CR-KECA algorithm suitable for the analysis of large-scale sleep data.

          Release date: Export PDF Favorites Scan
        • Automatic Classification of Epileptic Electroencephalogram Signal Based on Improved Multivariate Multiscale Entropy

          Traditional sample entropy fails to quantify inherent long-range dependencies among real data. Multiscale sample entropy (MSE) can detect intrinsic correlations in data, but it is usually used in univariate data. To generalize this method for multichannel data, we introduced multivariate multiscale entropy into multiscale signals as a reflection of the nonlinear dynamic correlation. But traditional multivariate multiscale entropy has a large quantity of computation and costs a large period of time and space for more channel system, so that it can not reflect the correlation between variables timely and accurately. In this paper, therefore, an improved multivariate multiscale entropy embeds on all variables at the same time, instead of embedding on a single variable as in the traditional methods, to solve the memory overflow while the number of channels rise, and it is more suitable for the actual multivariate signal analysis. The method was tested in simulation data and Bonn epilepsy dataset. The simulation results showed that the proposed method had a good performance to distinguish correlation data. Bonn epilepsy dataset experiment also showed that the method had a better classification accuracy among the five data set, especially with an accuracy of 100% for data collection of Z and S.

          Release date: Export PDF Favorites Scan
        • Brain Vigilance Analysis Based on the Measure of Complexity

          Vigilance is defined as the ability to maintain attention for prolonged periods of time. In order to explore the variation of brain vigilance in work process, we designed addition and subtraction experiment with numbers of three digits to induce the vigilance to change, combined it with psychomotor vigilance task (PVT) to measure this process of electroencephalogram (EEG), extracted and analyzed permutation entropy (PE) of 11 cases of subjects' EEG and made a brief comparison with nonlinear parameter sample entropy (SE). The experimental results showed that:PE could well reflect the dynamic changes of EEG when vigilance decreases, and has advantages of fast arithmetic speed, high noise immunity, and low requirements for EEG length. This can be used as a measure of the brain vigilance indicators.

          Release date: Export PDF Favorites Scan
        • An Assessment Method of Electroencephalograph Signals in Severe Disorders of Consciousness Based on Entropy

          This paper explores a methodology used to discriminate the electroencephalograph (EEG) signals of patients with vegetative state (VS) and those with minimally conscious state (MCS). The model was derived from the EEG data of 33 patients in a calling name stimulation paradigm. The preprocessing algorithm was applied to remove the noises in the EEG data. Two types of features including sample entropy and multiscale entropy were chosen. Multiple kernel support vector machine was investigated to perform the training and classification. The experimental results showed that the alpha rhythm features of EEG signals in severe disorders of consciousness were significant. We achieved the average classification accuracy of 88.24%. It was concluded that the proposed method for the EEG signal classification for VS and MCS patients was effective. The approach in this study may eventually lead to a reliable tool for identifying severe disorder states of consciousness quantitatively. It would also provide the auxiliary basis of clinical assessment for the consciousness disorder degree.

          Release date:2016-10-24 01:24 Export PDF Favorites Scan
        • Epileptic electroencephalogram recognition based on discrete S transform and permutation entropy

          Electroencephalogram(EEG) analysis has important reference value in the diagnosis of epilepsy. The automatic classification of epileptic EEG can be used to judge the patient’s situation in time,which is of great significance in clinical application. In order to solve the problem that the recognition accuracy is not high by using the single feature of EEG signals and avoid the influence of wavelet basis function selection on recognition results,a method of automatic discrimination of epileptic EEG signals based on S transform and permutation entropy is proposed. Firstly, the original signals are decomposed by discrete S transform, and then we calculate the fluctuation index of coefficients of each rhythm and combine the permutation entropy of EEG signals into a feature vector and use Real AdaBoost classifier to discriminate the epileptic EEG signals in muti-period. In this study, we used the epilepsy database from University of Bonn. Three groups of EEG signals, including the data of normal people with their eyes open, the data collected inside of the epileptic foci from patients during their interictal period and the data during their ictal period, were used to test effectiveness. The results of this study showed that the fluctuation index of each rhythm could be used to characterize the normal, interictal and ictal epileptic EEG signals effectively, and the recognition accuracy of multiple features was much higher than that of single feature. The average recognition accuracy could reach 98.13%. Compared with time-frequency feature extraction method or nonlinear feature extraction method only,the recognition accuracy was increased by more than 1.2% and 8.1% respectively, which was superior to the methods recorded in many other literatures. Therefore, this method has a good application prospect in diagnosis of epilepsy.

          Release date:2017-10-23 02:15 Export PDF Favorites Scan
        5 pages Previous 1 2 3 4 5 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜