• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "entropy" 41 results
        • Automatic Classification of Epileptic Electroencephalogram Signal Based on Improved Multivariate Multiscale Entropy

          Traditional sample entropy fails to quantify inherent long-range dependencies among real data. Multiscale sample entropy (MSE) can detect intrinsic correlations in data, but it is usually used in univariate data. To generalize this method for multichannel data, we introduced multivariate multiscale entropy into multiscale signals as a reflection of the nonlinear dynamic correlation. But traditional multivariate multiscale entropy has a large quantity of computation and costs a large period of time and space for more channel system, so that it can not reflect the correlation between variables timely and accurately. In this paper, therefore, an improved multivariate multiscale entropy embeds on all variables at the same time, instead of embedding on a single variable as in the traditional methods, to solve the memory overflow while the number of channels rise, and it is more suitable for the actual multivariate signal analysis. The method was tested in simulation data and Bonn epilepsy dataset. The simulation results showed that the proposed method had a good performance to distinguish correlation data. Bonn epilepsy dataset experiment also showed that the method had a better classification accuracy among the five data set, especially with an accuracy of 100% for data collection of Z and S.

          Release date: Export PDF Favorites Scan
        • Wavelet Entropy Analysis of Spontaneous EEG Signals in Alzheimer's Disease

          Wavelet entropy is a quantitative index to describe the complexity of signals. Continuous wavelet transform method was employed to analyze the spontaneous electroencephalogram (EEG) signals of mild, moderate and severe Alzheimer's disease (AD) patients and normal elderly control people in this study. Wavelet power spectrums of EEG signals were calculated based on wavelet coefficients. Wavelet entropies of mild, moderate and severe AD patients were compared with those of normal controls. The correlation analysis between wavelet entropy and MMSE score was carried out. There existed significant difference on wavelet entropy among mild, moderate, severe AD patients and normal controls (P<0.01). Group comparisons showed that wavelet entropy for mild, moderate, severe AD patients was significantly lower than that for normal controls, which was related to the narrow distribution of their wavelet power spectrums. The statistical difference was significant (P<0.05). Further studies showed that the wavelet entropy of EEG and the MMSE score were significantly correlated (r=0.601-0.799, P<0.01). Wavelet entropy is a quantitative indicator describing the complexity of EEG signals. Wavelet entropy is likely to be an electrophysiological index for AD diagnosis and severity assessment.

          Release date: Export PDF Favorites Scan
        • An improved electroencephalogram feature extraction algorithm and its application in emotion recognition

          The result of the emotional state induced by music may provide theoretical support and help for assisted music therapy. The key to assessing the state of emotion is feature extraction of the emotional electroencephalogram (EEG). In this paper, we study the performance optimization of the feature extraction algorithm. A public multimodal database for emotion analysis using physiological signals (DEAP) proposed by Koelstra et al. was applied. Eight kinds of positive and negative emotions were extracted from the dataset, representing the data of fourteen channels from the different regions of brain. Based on wavelet transform, δ, θ, α and β rhythms were extracted. This paper analyzed and compared the performances of three kinds of EEG features for emotion classification, namely wavelet features (wavelet coefficients energy and wavelet entropy), approximate entropy and Hurst exponent. On this basis, an EEG feature fusion algorithm based on principal component analysis (PCA) was proposed. The principal component with a cumulative contribution rate more than 85% was retained, and the parameters which greatly varied in characteristic root were selected. The support vector machine was used to assess the state of emotion. The results showed that the average accuracy rates of emotional classification with wavelet features, approximate entropy and Hurst exponent were respectively 73.15%, 50.00% and 45.54%. By combining these three methods, the features fused with PCA possessed an accuracy of about 85%. The obtained classification accuracy by using the proposed fusion algorithm based on PCA was improved at least 12% than that by using single feature, providing assistance for emotional EEG feature extraction and music therapy.

          Release date:2017-08-21 04:00 Export PDF Favorites Scan
        • Onset detection of surface diaphragmatic electromyography based on sample entropy and individualized threshold

          The diaphragm is the main respiratory muscle in the body. The onset detection of the surface diaphragmatic electromyography (sEMGdi) can be used in the respiratory rehabilitation training of the hemiparetic stroke patients, but the existence of electrocardiography (ECG) increases the difficulty of onset detection. Therefore, a method based on sample entropy (SampEn) and individualized threshold, referred to as SampEn method, was proposed to detect onset of muscle activity in this paper, which involved the extraction of SampEn features, the optimization of the SampEn parameters w and r0, the selection of individualized threshold and the establishment of the judgment conditions. In this paper, three methods were used to compare onset detection accuracy with the SampEn method, which contained root mean square (RMS) with wavelet transform (WT), Teager-Kaiser energy operator (TKE) with wavelet transform and TKE without wavelet transform, respectively. sEMGdi signals of 12 healthy subjects in 2 different breathing ways were collected for signal synthesis and methods detection. The cumulative sum of the absolute value of error τ was used as an judgement value to evaluate the accuracy of the four methods. The results show that SampEn method can achieve higher and more stable detection precision than the other three methods, which is an onset detection method that can adapt to individual differences and achieve high detection accuracy without ECG denoising, providing a basis for sEMGdi based respiratory rehabilitation training and real time interaction.

          Release date:2019-02-18 02:31 Export PDF Favorites Scan
        • Automatic epileptic seizure detection algorithm based on dual density dual tree complex wavelet transform

          It is very important for epilepsy treatment to distinguish epileptic seizure and non-seizure. In this study, an automatic seizure detection algorithm based on dual density dual tree complex wavelet transform (DD-DT CWT) for intracranial electroencephalogram (iEEG) was proposed. The experimental data were collected from 15 719 competition data set up by the National Institutes of Health (NINDS) in Kaggle. The processed database consisted of 55 023 seizure epochs and 501 990 non-seizure epochs. Each epoch was 1 second long and contained 174 sampling points. Firstly, the signal was resampled. Then, DD-DT CWT was used for EEG signal processing. Four kinds of features include wavelet entropy, variance, energy and mean value were extracted from the signal. Finally, these features were sent to least squares-support vector machine (LS-SVM) for learning and classification. The appropriate decomposition level was selected by comparing the experimental results under different wavelet decomposition levels. The experimental results showed that the features selected in this paper were different between seizure and non-seizure. Among the eight patients, the average accuracy of three-level decomposition classification was 91.98%, the sensitivity was 90.15%, and the specificity was 93.81%. The work of this paper shows that our algorithm has excellent performance in the two classification of EEG signals of epileptic patients, and can detect the seizure period automatically and efficiently.

          Release date:2022-02-21 01:13 Export PDF Favorites Scan
        • Analysis of Electroencephalogram Sample Entropy Measurement in Frontal Association Cortex Based on Heroin-induced Conditioned Place Preference in Rats

          To explore the relationship between the drug-seeking behavior, motivation of conditioned place preference (CPP) rats and the frontal association cortex (FrA) electroencephalogram (EEG) sample entropy, we in this paper present our studies on the FrA EEG sample entropy of control group rats and CPP group rats, respectively. We invested different behavior in four situations of the rat activities, i.e. rats were staying in black chamber of videoed boxes, those staying in white chamber of videoed boxes, those shuttling between black-white chambers and those shuttling between white-black chambers. The experimental results showed that, compared with the control group rats, the FrA EEG sample entropy of CPP rats staying in black chamber of video box and shuttling between white-black chambers had no significant difference. However, sample entropy is significantly smaller (P < 0.01) when heroin-induced group rats stayed in white chamber of video box and shuttled between black-white chambers. Consequently, the drug-seeking behavior and motivation of CPP rats correlated closely with the EEG sample entropy changes.

          Release date: Export PDF Favorites Scan
        • Improving college students sub-threshold depression by music neurofeedback

          Sub-threshold depression refers to a psychological sub-health state that fails to meet the diagnostic criteria for depression. Appropriate intervention can improve the state and reduce the risks of disease development. In this paper, we focus on music neurofeedback stimulation improving emotional state of sub-threshold depression college students.Twenty-four college students with sub-threshold depression participated in the experiment, 16 of whom were members of the experimental group. Decompression music based on spectrum classification was applied to 16 experimental group participants for 10 min/d music neural feedback stimulation with a period of 14 days, and no stimulation was applied to 8 control group participants. Three feature parameters of electroencephalogram (EEG) relative power, sample entropy and complexity were extracted for analysis. The results showed that the relative power of α、β and θ rhythm increased, while δ rhythm decreased after the stimulation of musical nerofeedback in the experimental group. The sample entropy and complexity were significantly increased after the stimulation, and the differences of these parameters pre and post stimulation were statistically significant (P < 0.05), while the differences of all feature parameters in the control group were not statistically significant. In the experimental group, the scores of self-rating depression scale(SDS) decreased after the stimulation of musical nerofeedback, indicating that the depression was improved. The result of this study showed that music neurofeedback stimulation can improve sub-threshold depression and may provides an effective new way for college students to self-regulation of emotion.

          Release date:2020-04-18 10:01 Export PDF Favorites Scan
        • Weighted multiple multiscale entropy and its application in electroencephalography analysis of autism assessment

          In this paper, a feature extraction algorithm of weighted multiple multiscale entropy is proposed to solve the problem of information loss which is caused in the multiscale process of traditional multiscale entropy. Algorithm constructs the multiple data sequences from large to small on each scale. Then, considering the different contribution degrees of multiple data sequences to the entropy of the scale, the proportion of each sequence in the scale sequence is calculated by combining the correlation between the data sequences, so as to reconstruct the sample entropy of each scale. Compared with the traditional multiscale entropy the feature extraction algorithm based on weighted multiple multiscale entropy not only overcomes the problem of information loss, but also fully considers the correlation of sequences and the contribution to total entropy. It reduces the fluctuation between scales, and digs out the details of electroencephalography (EEG). Based on this algorithm, the EEG characteristics of autism spectrum disorder (ASD) children are analyzed, and the classification accuracy of the algorithm is increased by 23.0%, 10.4% and 6.4% as compared with the EEG extraction algorithm of sample entropy, traditional multiscale entropy and multiple multiscale entropy based on the delay value method, respectively. Based on this algorithm, the 19 channel EEG signals of ASD children and healthy children were analyzed. The results showed that the entropy of healthy children was slightly higher than that of the ASD children except the FP2 channel, and the numerical differences of F3, F7, F8, C3 and P3 channels were statistically significant (P<0.05). By classifying the weighted multiple multiscale entropy of each brain region, we found that the accuracy of the anterior temporal lobe (F7, F8) was the highest. It indicated that the anterior temporal lobe can be used as a sensitive brain area for assessing the brain function of ASD children.

          Release date:2019-02-18 03:16 Export PDF Favorites Scan
        • Effect of music therapy on brain function of autistic children based on power spectrum and sample entropy

          This study aims to explore whether Guzheng playing training has a positive impact on the brain functional state of children with Autism Spectrum Disorder (ASD) based on power spectral and sample entropy analyses. Eight ASD participants were selected to undergo four months of Guzheng playing training, with one month as a training cycle. Electroencephalogram (EEG) signals and behavioral data were collected for comparative analysis. The results showed that after Guzheng playing training, the relative power of the alpha band in the occipital lobe of ASD children increased, and the relative power of the theta band in the parietal lobe decreased. The differences compared with typically developing (TD) children were narrowed. Moreover, some channels exhibited a gradual increase or decrease in power with the extended training period. Meanwhile, the sample entropy parameter also showed a similar upward trend, which was consistent with the behavioral data representation. The study shows that Guzheng training can enhance the brain function of ASD patients, with better effects from longer training. Guzheng playing training could be used as a daily intervention for autism.

          Release date:2025-06-23 04:09 Export PDF Favorites Scan
        • An Assessment Method of Electroencephalograph Signals in Severe Disorders of Consciousness Based on Entropy

          This paper explores a methodology used to discriminate the electroencephalograph (EEG) signals of patients with vegetative state (VS) and those with minimally conscious state (MCS). The model was derived from the EEG data of 33 patients in a calling name stimulation paradigm. The preprocessing algorithm was applied to remove the noises in the EEG data. Two types of features including sample entropy and multiscale entropy were chosen. Multiple kernel support vector machine was investigated to perform the training and classification. The experimental results showed that the alpha rhythm features of EEG signals in severe disorders of consciousness were significant. We achieved the average classification accuracy of 88.24%. It was concluded that the proposed method for the EEG signal classification for VS and MCS patients was effective. The approach in this study may eventually lead to a reliable tool for identifying severe disorder states of consciousness quantitatively. It would also provide the auxiliary basis of clinical assessment for the consciousness disorder degree.

          Release date:2016-10-24 01:24 Export PDF Favorites Scan
        5 pages Previous 1 2 3 4 5 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜