• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "electroencephalogram" 104 results
        • Study on Brain Functional Connectivity Using Resting State Electroencephalogram Based on Synchronization Likelihood in Alzheimer's Disease

          Alzheimer's disease (AD) is the most common type of dementia and a neurodegenerative disease with progressive cognitive dysfunction as the main feature. How to identify the early changes of cognitive dysfunction and give appropriate treatments is of great significance to delay the onset of dementia. Some other researches have shown that AD is associated with abnormal changes of brain networks. To study human brain functional connectivity characteristics in AD, 16 channels electroencephalogram (EEG) were recorded under resting and eyes-closed condition in 15 AD patients and 15 subjects in the control group. The synchronization likelihood of the full-band and alpha-band (8-13 Hz) data were evaluated, which resulted in the synchronization likelihood coefficient matrices. Considering a threshold T, the matrices were converted into binary graphs. Then the graphs of two groups were measured by topological parameters including the clustering coefficient and global efficiency. The results showed that the global efficiency of the network in full-band EEG was significantly smaller in AD group for the values of T=0.06 and T=0.07, but there was no statistically significant difference in the clustering coefficients between the two groups for the values of T (0.05-0.07). However, the clustering coefficient and global efficiency were significantly lower in AD patients at alpha-band for the same threshold range than those of subjects in the control group. It suggests that there may be decreases of the brain connectivity strength in AD patients at alpha-band of the resting-state EEG. This study provides a support for quantifying functional brain state of AD from the brain network perspective.

          Release date: Export PDF Favorites Scan
        • An electroencephalogram-based study of resting-state spectrogram and attention in tinnitus patients

          The incidence of tinnitus is very high, which can affect the patient’s attention, emotion and sleep, and even cause serious psychological distress and suicidal tendency. Currently, there is no uniform and objective method for tinnitus detection and therapy, and the mechanism of tinnitus is still unclear. In this study, we first collected the resting state electroencephalogram (EEG) data of tinnitus patients and healthy subjects. Then the power spectrum topology diagrams were compared of in the band of δ (0.5–3 Hz), θ (4–7 Hz), α (8–13 Hz), β (14–30 Hz) and γ (31–50 Hz) to explore the central mechanism of tinnitus. A total of 16 tinnitus patients and 16 healthy subjects were recruited to participate in the experiment. The results of resting state EEG experiments found that the spectrum power value of tinnitus patients was higher than that of healthy subjects in all concerned frequency bands. The t-test results showed that the significant difference areas were mainly concentrated in the right temporal lobe of the θ and α band, and the temporal lobe, parietal lobe and forehead area of the β and γ band. In addition, we designed an attention-related task experiment to further study the relationship between tinnitus and attention. The results showed that the classification accuracy of tinnitus patients was significantly lower than that of healthy subjects, and the highest classification accuracies were 80.21% and 88.75%, respectively. The experimental results indicate that tinnitus may cause the decrease of patients’ attention.

          Release date:2021-08-16 04:59 Export PDF Favorites Scan
        • Study on Electroencephalogram Recognition Framework by Common Spatial Pattern and Fuzzy Fusion

          Common spatial pattern (CSP) is a very popular method for spatial filtering to extract the features from electroencephalogram (EEG) signals, but it may cause serious over-fitting issue. In this paper, after the extraction and recognition of feature, we present a new way in which the recognition results are fused to overcome the over-fitting and improve recognition accuracy. And then a new framework for EEG recognition is proposed by using CSP to extract features from EEG signals, using linear discriminant analysis (LDA) classifiers to identify the user's mental state from such features, and using Choquet fuzzy integral to fuse classifiers results. Brain-computer interface (BCI) competition 2005 data setsⅣa was used to validate the framework. The results demonstrated that it effectively improved recognition and to some extent overcome the over-fitting problem of CSP. It showed the effectiveness of this framework for dealing with EEG.

          Release date: Export PDF Favorites Scan
        • Application of Semi-supervised Sparse Representation Classifier Based on Help Training in EEG Classification

          Electroencephalogram (EEG) classification for brain-computer interface (BCI) is a new way of realizing human-computer interreaction. In this paper the application of semi-supervised sparse representation classifier algorithms based on help training to EEG classification for BCI is reported. Firstly, the correlation information of the unlabeled data is obtained by sparse representation classifier and some data with high correlation selected. Secondly, the boundary information of the selected data is produced by discriminative classifier, which is the Fisher linear classifier. The final unlabeled data with high confidence are selected by a criterion containing the information of distance and direction. We applied this novel method to the three benchmark datasets, which were BCIⅠ, BCIⅡ_Ⅳ and USPS. The classification rate were 97%,82% and 84.7%, respectively. Moreover the fastest arithmetic rate was just about 0.2 s. The classification rate and efficiency results of the novel method are both better than those of S3VM and SVM, proving that the proposed method is effective.

          Release date: Export PDF Favorites Scan
        • Application and evaluation of standardized management in video-electro-encephalogram monitoring

          ObjectiveTo explore the application effect of standardized management on video-electroencephalogram (VEEG) monitoring.MethodsIn January 2018, a multidisciplinary standardized management team composed with doctors, technicians, and nurses was established. The standardized management plan for VEEG monitoring from outpatient, pre-hospital appointment, hospitalization and post-discharge follow-up was developed; the special quilt for epilepsy patients was designed and customized, braided for the patient instead of shaving head, standardized the work flow of the staff, standardized the health education of the patients and their families, and standardized the quality control of the implementation process. The standardized managemen effect carried out from January to December 2018 (after standardized managemen) was compared with the management effect from January to December 2017 (before standardized managemen).ResultsAfter standardized management, the average waiting time of patients decreased from (2.08±1.13) hours to (0.53±0.21) hours, and the average hospitalization days decreased from (6.63±2.54) days to (6.14±2.17) days. The pass rate of patient preparation increased from 63.14% to 90.09%. The capture rate of seizure onset increased from 73.37% to 97.08%. The accuracy of the record increased from 33.12% to 94.10%, the doctor’s satisfaction increased from 76.34±29.53 to 97.99±9.27, and the patient’s satisfaction increased from 90.04±18.97 to 99.03±6.51. The difference was statistically significant (P<0.05).ConclusionStandardization management is conducive to ensuring the homogeneity of clinical medical care, reducing the average waiting time and the average hospitalization days, improving the capture rate and accuracy of seizures, ensuring the quality of medical care and improving patient’s satisfaction.

          Release date:2019-06-25 09:50 Export PDF Favorites Scan
        • Quality management of long-term video-EEG monitoring process

          ObjectiveTo summarize the method of quality management in long term video electroencephalogram (VEEG) monitoring process.MethodsTo summarize the VEEG monitoring process in 4 935 patients, the following methods were adopted: adequate preparation before examination, selection of suitable electrode wearing methods, regular inspection of the quality of the lead wire, inspection and observation of whether the electrodes have fallen off, process inspection, behavioral intervention guidance, timely manage the artifacts, pay more attention to the inducted experimental, timely identification of paroxysmal events, standardize the procedures for the management of seizures, standardize the processing of electrode cleaning and disinfection, continuously improve the quality.ResultsFour hundred and tworoy are paroxysmal events of various types occurred during the monitoring period. All of them were handled in time and the patients were all safe. Among these events, 4 children ended the examination in ahead of the normal procedure due to fever, crying or other reasons. two patients were transferred to intensive care unit due to changes in patients ’conditions such as hypopnea and decreased oxygen saturation of artery blood of finger. The remaining 4 829 patients completed VEEG detection for 8 ~ 24 h. and got good quality images.ConclusionsQuality management is a guarantee of qualified, high quality, low artifact EEG reports.

          Release date:2019-03-21 11:04 Export PDF Favorites Scan
        • Cross-subject electroencephalogram emotion recognition based on maximum classifier discrepancy

          Affective brain-computer interfaces (aBCIs) has important application value in the field of human-computer interaction. Electroencephalogram (EEG) has been widely concerned in the field of emotion recognition due to its advantages in time resolution, reliability and accuracy. However, the non-stationary characteristics and individual differences of EEG limit the generalization of emotion recognition model in different time and different subjects. In this paper, in order to realize the recognition of emotional states across different subjects and sessions, we proposed a new domain adaptation method, the maximum classifier difference for domain adversarial neural networks (MCD_DA). By establishing a neural network emotion recognition model, the shallow feature extractor was used to resist the domain classifier and the emotion classifier, respectively, so that the feature extractor could produce domain invariant expression, and train the decision boundary of classifier learning task specificity while realizing approximate joint distribution adaptation. The experimental results showed that the average classification accuracy of this method was 88.33% compared with 58.23% of the traditional general classifier. It improves the generalization ability of emotion brain-computer interface in practical application, and provides a new method for aBCIs to be used in practice.

          Release date:2021-08-16 04:59 Export PDF Favorites Scan
        • Electroencephalogram feature extraction and classification of autistic children based on recurrence quantification analysis

          Extraction and analysis of electroencephalogram (EEG) signal characteristics of patients with autism spectrum disorder (ASD) is of great significance for the diagnosis and treatment of the disease. Based on recurrence quantitative analysis (RQA)method, this study explored the differences in the nonlinear characteristics of EEG signals between ASD children and children with typical development (TD). In the experiment, RQA method was used to extract nonlinear features such as recurrence rate (RR), determinism (DET) and length of average diagonal line (LADL) of EEG signals in different brain regions of subjects, and support vector machine was combined to classify children with ASD and TD. The research results show that for the whole brain area (including parietal lobe, frontal lobe, occipital lobe and temporal lobe), when the three feature combinations of RR, DET and LADL are selected, the maximum classification accuracy rate is 84%, the sensitivity is 76%, the specificity is 92%, and the corresponding area under the curve (AUC) value is 0.875. For parietal lobe and frontal lobe (including parietal lobe, frontal lobe), when the three features of RR, DET and LADL are combined, the maximum classification accuracy rate is 82%, the sensitivity is 72%, and the specificity is 92%, which corresponds to an AUC value of 0.781. The research in this paper shows that the nonlinear characteristics of EEG signals extracted based on RQA method can become an objective indicator to distinguish children with ASD and TD, and combined with machine learning methods, the method can provide auxiliary evaluation indicators for clinical diagnosis. At the same time, the difference in the nonlinear characteristics of EEG signals between ASD children and TD children is statistically significant in the parietal-frontal lobe. This study analyzes the clinical characteristics of children with ASD based on the functions of the brain regions, and provides help for future diagnosis and treatment.

          Release date:2021-10-22 02:07 Export PDF Favorites Scan
        • Study on classification and identification of depressed patients and healthy people among adolescents based on optimization of brain characteristics of network

          To enhance the accuracy of computer-aided diagnosis of adolescent depression based on electroencephalogram signals, this study collected signals of 32 female adolescents (16 depressed and 16 healthy, age: 16.3 ± 1.3) with eyes colsed for 4 min in a resting state. First, based on the phase synchronization between the signals, the phase-locked value (PLV) method was used to calculate brain functional connectivity in the θ and α frequency bands, respectively. Then based on the graph theory method, the network parameters, such as strength of the weighted network, average characteristic path length, and average clustering coefficient, were calculated separately (P < 0.05). Next, using the relationship between multiple thresholds and network parameters, the area under the curve (AUC) of each network parameter was extracted as new features (P < 0.05). Finally, support vector machine (SVM) was used to classify the two groups with the network parameters and their AUC as features. The study results show that with strength, average characteristic path length, and average clustering coefficient as features, the classification accuracy in the θ band is increased from 69% to 71%, 66% to 77%, and 50% to 68%, respectively. In the α band, the accuracy is increased from 72% to 79%, 69% to 82%, and 65% to 75%, respectively. And from overall view, when AUC of network parameters was used as a feature in the α band, the classification accuracy is improved compared to the network parameter feature. In the θ band, only the AUC of average clustering coefficient was applied to classification, and the accuracy is improved by 17.6%. The study proved that based on graph theory, the method of feature optimization of brain function network could provide some theoretical support for the computer-aided diagnosis of adolescent depression.

          Release date:2021-02-08 06:54 Export PDF Favorites Scan
        • Research on analysis method of multi-fractal de-trended fluctuation of electroencephalogram focus on mental stress evaluation

          The multi-fractal de-trended fluctuation analysis was used to estimate the mental stress in the present study. In order to obtain the optimal fractal order of the multi-fractal de-trended fluctuation analysis, we analyzed the relationship between singular index and Hurst index with order. We recorded the electroencephalogram (EEG) of 14 students, compared the relationship between singular index, Hurst index and quality index, ensured the optimal order being [—5, 5] and achieved the estimation of mental stress with the β wave in the EEGs. The result indicated that Hurst index and quality index of the EEGs under mental stress were greater than those of EEGs in the relaxing state. The Hurst index was gradually decreasing with the order increasing and was finally approaching a constant, while the quality index was amplified and variation of amplitude of the singular index was more obvious. We also compared the amplitude and the width of singular spectrum of the EEGs under the two conditions, and results indicated that the characteristics of multi-fractal spectrum of the EEGs under different conditions were different, namely the width of singular spectrum of the EEGs under mental stress was greater than that under relax condition.

          Release date:2017-04-13 10:03 Export PDF Favorites Scan
        11 pages Previous 1 2 3 ... 11 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜