• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "deep learning" 52 results
        • Cross-modal retrieval method for thyroid ultrasound image and text based on generative adversarial network

          Ultrasonic examination is a common method in thyroid examination, and the results are mainly composed of thyroid ultrasound images and text reports. Implementation of cross modal retrieval method of images and text reports can provide great convenience for doctors and patients, but currently there is no retrieval method to correlate thyroid ultrasound images with text reports. This paper proposes a cross-modal method based on the deep learning and improved cross-modal generative adversarial network: ①the weight sharing constraints between the fully connection layers used to construct the public representation space in the original network are changed to cosine similarity constraints, so that the network can better learn the common representation of different modal data; ②the fully connection layer is added before the cross-modal discriminator to merge the full connection layer of image and text in the original network with weight sharing. Semantic regularization is realized on the basis of inheriting the advantages of the original network weight sharing. The experimental results show that the mean average precision of cross modal retrieval method for thyroid ultrasound image and text report in this paper can reach 0.508, which is significantly higher than the traditional cross-modal method, providing a new method for cross-modal retrieval of thyroid ultrasound image and text report.

          Release date:2020-10-20 05:56 Export PDF Favorites Scan
        • Research progress of auxiliary diagnosis classification algorithm for lung tumor imaging

          The classification of lung tumor with the help of computer-aided diagnosis system is very important for the early diagnosis and treatment of malignant lung tumors. At present, the main research direction of lung tumor classification is the model fusion technology based on deep learning, which classifies the multiple fusion data of lung tumor with the help of radiomics. This paper summarizes the commonly used research algorithms for lung tumor classification, introduces concepts and technologies of machine learning, radiomics, deep learning and multiple data fusion, points out the existing problems and difficulties in the field of lung tumor classification, and looks forward to the development prospect and future research direction of lung tumor classification.

          Release date:2022-07-28 10:21 Export PDF Favorites Scan
        • Application status and prospects of radiomics in diagnosis and treatment of biliary tract cancer

          Biliary tract cancer is characterized by occult onset, highly malignancy and poor prognosis. Traditional medical imaging is an important tool for surgical strategies and prognostic assessment, but it can no longer meet the urgent need for accurate and individualized treatment in patients with biliary tract cancer. With the advent of the digital imaging era, the advancement of artificial intelligence technology has given a new vitality to digital imaging, and provided more possibilities for the development of medical imaging in clinical applications. The application of radiomics in the diagnosis and differential diagnosis of benign and malignant tumors of biliary tract, assessment of lymph node status, early recurrence and prognosis assessment provides new means for the diagnosis and treatment of patients with biliary tract cancer.

          Release date:2023-02-02 08:55 Export PDF Favorites Scan
        • Artificial intelligence in congenital cardiology

          Artificial intelligence belongs to the field of computer science. In the past few decades, artificial intelligence has shown broad application prospects in the medical field. With the development of computer technology in recent years, doctors and computer scientists have just begun to discover its potential for clinical application, especially in the field of congenital heart disease. Artificial intelligence now has been successfully applied to the prediction, intelligent diagnosis, medical image segmentation and recognition, clinical decision support of congenital heart disease. This article reviews the application of artificial intelligence in congenital cardiology.

          Release date:2020-03-25 09:52 Export PDF Favorites Scan
        • Prediction of gene mutation in lung cancer based on deep learning and histomorphology analysis

          Lung cancer is a most common malignant tumor of the lung and is the cancer with the highest morbidity and mortality worldwide. For patients with advanced non-small cell lung cancer who have undergone epidermal growth factor receptor (EGFR) gene mutations, targeted drugs can be used for targeted therapy. There are many methods for detecting EGFR gene mutations, but each method has its own advantages and disadvantages. This study aims to predict the risk of EGFR gene mutation by exploring the association between the histological features of the whole slides pathology of non-small cell lung cancer hematoxylin-eosin (HE) staining and the patient's EGFR mutant gene. The experimental results show that the area under the curve (AUC) of the EGFR gene mutation risk prediction model proposed in this paper reached 72.4% on the test set, and the accuracy rate was 70.8%, which reveals the close relationship between histomorphological features and EGFR gene mutations in the whole slides pathological images of non-small cell lung cancer. In this paper, the molecular phenotypes were analyzed from the scale of the whole slides pathological images, and the combination of pathology and molecular omics was used to establish the EGFR gene mutation risk prediction model, revealing the correlation between the whole slides pathological images and EGFR gene mutation risk. It could provide a promising research direction for this field.

          Release date:2020-04-18 10:01 Export PDF Favorites Scan
        • Research progress in lung parenchyma segmentation based on computed tomography

          Lung diseases such as lung cancer and COVID-19 seriously endanger human health and life safety, so early screening and diagnosis are particularly important. computed tomography (CT) technology is one of the important ways to screen lung diseases, among which lung parenchyma segmentation based on CT images is the key step in screening lung diseases, and high-quality lung parenchyma segmentation can effectively improve the level of early diagnosis and treatment of lung diseases. Automatic, fast and accurate segmentation of lung parenchyma based on CT images can effectively compensate for the shortcomings of low efficiency and strong subjectivity of manual segmentation, and has become one of the research hotspots in this field. In this paper, the research progress in lung parenchyma segmentation is reviewed based on the related literatures published at domestic and abroad in recent years. The traditional machine learning methods and deep learning methods are compared and analyzed, and the research progress of improving the network structure of deep learning model is emphatically introduced. Some unsolved problems in lung parenchyma segmentation were discussed, and the development prospect was prospected, providing reference for researchers in related fields.

          Release date:2021-06-18 04:50 Export PDF Favorites Scan
        • Research progress on artificial intelligence in precise pathological diagnosis of lung cancer

          The incidence of lung cancer has increased significantly during the past decades. Pathology is the gold standard for diagnosis and the corresponding treatment measures selection of lung cancer. In recent years, with the development of artificial intelligence and digital pathology, the researches of pathological image analysis have achieved remarkable progresses in lung cancer. In this review, we will introduce the research progress on artificial intelligence in pathological classification, mutation genes and prognosis of lung cancer. Artificial intelligence is expected to further accelerate the pace of precision pathology.

          Release date:2021-06-07 02:03 Export PDF Favorites Scan
        • Progress in abdominal aortic aneurysm based on artificial intelligence and radiomics

          Objective To review the progress of artificial intelligence (AI) and radiomics in the study of abdominal aortic aneurysm (AAA). Method The literatures related to AI, radiomics and AAA research in recent years were collected and summarized in detail. Results AI and radiomics influenced AAA research and clinical decisions in terms of feature extraction, risk prediction, patient management, simulation of stent-graft deployment, and data mining. Conclusion The application of AI and radiomics provides new ideas for AAA research and clinical decisions, and is expected to suggest personalized treatment and follow-up protocols to guide clinical practice, aiming to achieve precision medicine of AAA.

          Release date:2022-09-20 01:53 Export PDF Favorites Scan
        • Research on development trends of multimodal fusion for medical image classification

          This review systematically analyzes recent research progress in multimodal fusion techniques for medical imaging classification, focusing on various fusion strategies and their effectiveness in classification tasks. Studies indicate that multimodal fusion methods significantly enhance classification performance and demonstrate potential in clinical decision support. However, challenges remain, including insufficient dataset sharing, limited utilization of text modalities, and inadequate integration of fusion strategies with medical knowledge. Future efforts should focus on developing large-scale public datasets and optimizing deep fusion strategies for image and text modalities to promote broader application in medical scenarios.

          Release date:2025-07-17 01:33 Export PDF Favorites Scan
        • Constructing an intelligent ultrasound diagnosis system for breast nodules in patients with abnormal thyroid function using deep learning algorithms

          ObjectiveTo construct an intelligent ultrasound diagnosis system for breast nodules in patients with thyroid dysfunction using deep learning algorithms. MethodsA retrospective analysis was collected breast ultrasound images of 178 patients with thyroid dysfunction from the ultrasound database of the First Affiliated Hospital of Xinjiang Medical University from January 2023 to February 2024, which served as the training set. The deep learning algorithm was used to construct an intelligent ultrasound diagnosis system for breast nodules in patients with thyroid dysfunction. In addition, a retrospective analysis was collected breast ultrasound images of 81 patients with thyroid dysfunction from the ultrasound database of the First Affiliated Hospital of Xinjiang Medical University from March 2024 to January 2025, which served as the validation set. The above system was used as validation set to diagnose whether patients with thyroid dysfunction had breast nodules, and the diagnostic efficacy of imaging physicians’ diagnosis and the intelligent ultrasound diagnosis system for breast nodules in patients with thyroid dysfunction was analyzed. The consistency between the diagnosis of ultrasound physicians, intelligent ultrasound diagnosis system and the “gold standard” was tested by Kappa test. ResultsThere was no statistically significant difference in age, type of thyroid dysfunction, disease duration, number of breast nodules, and other clinical data between the training set and the validation set (P>0.05). The time required for the training set intelligent ultrasound diagnostic system to diagnose a single breast ultrasound image was (0.04±0.01) min, which was lower than that of an ultrasound specialist [(12.36±2.58) min], t=63.709, P<0.001. The sensitivity, specificity, accuracy, and area under the curve (AUC) of detecting breast nodules in patients with thyroid dysfunction using an intelligent ultrasound diagnostic system were 97.87% (46/47), 100% (34/34), 98.77% (80/81), and 0.997 [95%CI: (0.951, 1.00)], respectively. The sensitivity, specificity, accuracy, and AUC of detecting breast nodules by ultrasound physicians were 89.36% (42/47), 91.18% (31/34), 90.12% (73/81), and 0.904 [95%CI: (0.818, 0.958)], respectively. The AUC of the intelligent ultrasound diagnosis system was higher than that of the ultrasound physician (Z=2.673, P=0.008). The detection results of breast nodules in patients with thyroid dysfunction diagnosed by ultrasound physicians were generally consistent with the “gold standard” (Kappa value=0.799, P<0.001), while the intelligent ultrasound diagnosis system was in good agreement with the “gold standard” (Kappa value=0.975, P<0.001). The confusion matrix results showed that the number of false positives was 3 and 0 for the ultrasound department physicians and the intelligent ultrasound diagnostic system, respectively, while the number of false negatives was 5 and 1. The calibration curve results indicated a high consistency between the diagnostic probability and the actual probability of the intelligent ultrasound diagnostic system, with the calibration curve fitting well with the ideal curve (Hosmer-Lemeshow test: χ2=1.246, P=0.997). ConclusionThe intelligent ultrasound diagnosis system for breast nodules in patients with thyroid dysfunction constructed by deep learning algorithm has good diagnostic efficacy, which can help ultrasound physicians improve screening efficiency and accuracy.

          Release date: Export PDF Favorites Scan
        6 pages Previous 1 2 3 ... 6 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜