• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "anatomy" 70 results
        • ANATOMIC STUDY ON ENTRY POINT AND IMPLANT TECHNIQUE FOR C2 PEDICLE SCREW FIXATION

          ObjectiveTo determine the entry point and screw implant technique in posterior pedicle screw fixation by anatomical measurement of adult dry samples of the axis so as to provide a accurate anatomic foundation for clinical application. MethodsA total of 60 dry adult axis specimens were selected for pedicle screws fixation. The entry point was 1-2 mm lateral to the crossing point of two lines: a vertical line through the midpoint of distance from the junction of pedicle medial and lateral border to lateral mass, and a horizontal line through the junction between the lateral border of inferior articular process and the posterior branch of transverse process. The pedicle screw was inserted at the entry point. The measurement of the anatomic parameters included the height and width of pedicle, the maximum length of the screw path, the minimum distance from screw path to spinal canal and transverse foramen, and the angle of pedicle screw. The data above were provided to determine the surgical feasibility and screw safety. ResultsThe width of upper, middle, and lower parts of the pedicle was (7.35±0.89), (5.50±1.48), and (3.97±1.01) mm respectively. The pedicle height was (9.94±1.16) mm and maximum length of the screw path was (25.91±1.15) mm. The angle between pedicle screw and coronal plane was (26.95±1.88)° and the angle between pedicle screw and transverse plane was (22.81±1.61)°. The minimum distance from screw path to spinal canal and transverse foramen was (2.72±0.83) mm and (1.98±0.26) mm respectively. ConclusionAccording to the anatomic research, a safe entry point for C2 pedicle screw fixation is determined according to the midpoint of distance from the junction of pedicle medial and lateral border to lateral mass, as well as the junction between the lateral border of inferior articular process and the posterior branch of transverse process, which is confirmed to be effectively and safely performed using the entry point and screw angle of the present study.

          Release date:2016-08-25 10:18 Export PDF Favorites Scan
        • Reproducibility of macular ganglion cell-inner plexiform layer measurements using spectral-domain optical coherence tomography

          ObjectiveTo evaluate the repeatability and reproducibility of macular ganglion cell-inner plexiform layer (GCIPL) thickness measurement using spectral-domain optical coherence tomography (Cirrus HD-OCT). MethodOne hundred and eight eyes of 54 normal subjects (26 males and 28 females) between 19 and 75 years of age were included. Each eye underwent macular scanning using Cirrus HD-OCT Macular Cube 512×128 protocol by two operators. Three scans of each eye were obtained by each operator. For the right eye of each subject, three extra scans were obtained using Macular Cube 200×200 protocol by one operator. The average, minimum, superotemporal, superior, superonasal, inferonasal, inferior, and inferotemporal GCIPL thickness was analyzed and the repeatability of GCIPL thickness measurement was evaluated with intra-operator, inter-operator, intra-protocol, and inter-protocol intraclass correlation coefficients (ICC). Ten extra scans were obtained from the left eyes of 10 randomly selected subjects for reproducibility assessment with coefficients of variation (CV). ResultsThe intra-operator ICC of macular GCIPL measurement using Macular Cube 512×128 protocol by two operators were 0.959-0.995 and 0.954-0.997, respectively; and the inter-operator ICC were 0.944-0.993. All intra-and inter-operator ICC were > 0.800 with the highest and lowest records of the average and minimum GCIPL thickness, respectively. The intra-protocol ICC of Macular Cube 512×128 protocol and Macular Cube 200×200 protocol were 0.986-0.996 and 0.927-0.997, respectively; and the inter-protocol ICC were 0.966-0.994. All intra-and inter-protocol ICC were > 0.800. CV of GCIPL thickness measurement using Macular Cube 512×128 protocol were (0.70±0.31)%-(1.35±0.86)%. ConclusionCirrus HD-OCT can measure macular GCIPL thickness in normal eyes with excellent repeatability and reproducibility.

          Release date: Export PDF Favorites Scan
        • APPLIED ANATOMIC AND BIOMECHANICAL STUDY ON RECONSTRUCTION OF POSTEROLATERAL COMPLEX OF KNEE

          Objective To provide the anatomic evidences and the choice of tendon graft for anatomic reconstruction of posterolateral complex through the morphological and biomechanical study on posterolateral structures of the knee in normal adult cadavers. Methods Twenty-three fresh lower l imb specimens from voluntary donators and 9 lower l imbs soaked by Formal in were selected for anatomic study on the posterolateral complex of the knee. Six fresh specimens were appl ied to measure the maximum load, intensity of popl iteus tendon, lateral collateral l igament, and popl iteofibular l igament, which were key components of the posterolateral complex. Results Popl iteus musculotendinous junction was located at 7.02-11.52 mm beneath lateral tibial plateau and 8.22-13.94 mm medially to fibular styloid process. The distances from femoral insertion of popl iteus tendon to the lower border of femoral condyle and to posterior edge of femoral condyle were 10.52-14.38 mm and 14.24-26.18 mm, respectively. Popl iteofibular l igament originated from popl iteus musculotendinous junction and ended at fibular styloid process. Lateral collateral l igament was located at 10.54-16.48 mm inferior to fibular styloid process, and the distances from femoral insertion to the lower border of femoral condyle and to posterior edge of femoral condyle were 14.92-19.62 mm and 14.66-27.08 mm, respectively. The maximum load and intensity were 579.60-888.40 N and 20.50-43.70 MPa for popl iteus tendon, were 673.80-1 003.20 N and 24.30-56.40 MPa for lateral collateral l igament, and were 101.56-567.35 N and 8.94-36.16 MPa for popl iteofibular l igament, respectively. Conclusion During anatomical reconstruction of posterolateral complex, the bony tunnel of the key components should be located according to the insertion mentioned above. On the basis of this study, the maximum load and intensity of selectable grafts should exceed 833 N and 36 MPa.

          Release date:2016-09-01 09:03 Export PDF Favorites Scan
        • Imaging modality-independent anatomy of the left heart: implications for left-sided transcatheter interventions

          Interventional cardiologists have traditionally relied upon fluoroscopic imaging for percutaneous coronary interventions. Transcatheter structural heart interventions, however, require additional imaging modalities such as echocardiography and multislice computed tomography (MSCT) for pre-, intra- and post-procedural assistance. During transcatheter structural heart interventions, interventional cardiologists and non-invasive cardiovascular imagers may use different terminologies to describe a certain structure, thus causing misunderstandings within the team. Herein, we present a modality- independent terminology for understanding volumetric images in the context of transcatheter heart valve therapies. The goal of this system is to allow physicians to readily interpret the orientation of fluoroscopic, MSCT, echocardiographic and MRI images, thus generalising their understanding of cardiac anatomy to all imaging modalities.

          Release date:2018-02-26 05:32 Export PDF Favorites Scan
        • The CT Features of Gastric Bare Area under Pathological Conditions

          ObjectiveTo investigate the CT presenting rate and features of gastric bare area (GBA, including the area posterior to GBA and the adipose tissue in the gastrophrenic ligament) without pathologic changes.MethodsThirty cases with superior peritoneal ascites, but without pathological involvement of GBA were included into the study to show the normal condition of GBA, including the presenting rate and CT features. We selected some cases with GBA invasion by inflammation or neoplasm to observe their CT features. ResultsAll cases with superior peritoneal ascites showed the GBA against the contrast of ascites with the presenting rate of 100%. The GBA appeared at the level of gastricesophageal conjunction and completely disappeared at the level of hepatoduodenal ligament and Winslow’s foramen. The maximum scope of GBA presented at the level of the sagital part of the left portal vein with mean right to left distance of (4.39±0.08)cm (3.8~5.7 cm) (distance between the left and right layer of the gastrophrenic ligament). In acute pancreatitis, the width of GBA increased, in which local hypodensity area could be seen. In gastric leiomyosarcoma invading GBA, the mass could not separate from the crus of the diaphragm. In lymphoma and metastasis invading GBA, the thickness of GBA increased and the density was heterogeneous, in which lymph nodes presenting as small nodes or fused mass. ConclusionThe results of this study show that it is helpful to use contrast enhanced spiral CT scanning to observe the change of GBA and to diagnose retroperitoneal abnormalities that involving GBA comprehensively and accurately.

          Release date:2016-08-28 04:49 Export PDF Favorites Scan
        • VASCULAR ANATOMY OF DONOR AND RECIPIENT IN LIVING KIDNEY TRANSPLANTATION

          Objective To review the vascular anatomy of the donor and the reci pient for the l iving kidney transplantation. Methods The recent l iterature about the vessels of donor and reci pient in cl inical appl ications was extensively reviewed. Results The pertinent vascular anatomy of the donor and recipient was essential for the screening of the proper candidates, surgical planning and long-term outcome. Early branching and accessory renal artery of the donor were particularly important to deciding the side of nephrectomy, surgical technique and anastomosing pattern, and their injuries were the most frequent factor of the conversion from laparoscopic to open surgery. With increase of laparoscopic nephrectomy indonors, accurate venous anatomy was paid more and more attention to because venous bleeding could also lead to conversion to open nephrectomy. Multidetector CT (MDCT) could supplant the conventional excretory urography and renal catheter angiography and could accurately depict the donors’ vessels, vascular variations. In addition, MDCT can excellently evaluate the status of donor kidney, collecting system and other pertinent anatomy details. Conclusion Accurate master of related vascular anatomy can facil iate operation plan and success of operation and can contribute to the rapid development of living donor kidney transplantation. MDCT has become the choice of preoperative one-stop image assessment for living renal donors.

          Release date:2016-09-01 09:08 Export PDF Favorites Scan
        • APPLIED ANATOMY OF COMPOUND FLAP BASED ON FIBULAR HEAD TO REBUILD DEFECTS OF INTERNALMALLEOLUS

          To provide anatomical evidences for the blood supply compound flap based on fibular head to rebuild internal malleolus. Methods The morphology of vessels and bones in donor site and in recipient site was observed. The materials for the study were l isted as follows: ① Forty desiccative adult tibias (20 left and 20 right respectively) were used to measure the basilar width, middle thickness, anterior length, posterior length and introversion angle of internal malleolus; ② Forty desiccative adult fibulas (20 left and 20 right respectively) were used to measure the middle width and thickness, as well as the extraversion angle of articular surface of fibular head; ③ Thirty adult lower l imb specimens which perfused with red rubber were used to observe the blood supply relationships between the anterior tibial recurrent vessels and fibular head, and internal anterior malleolar vessels inside recipient site. Results The internal malleolus had a basilar width of (2.6 ± 0.2) cm, a middle thickness of (1.3 ± 0.2) cm, an anterior length of (1.4 ± 1.9) cm and a posterior length of (0.6 ± 0.1) cm. Its articular facet was half-moon. Its introversion angle was (11.89 ± 3.60)°. The fibular head had a middle thickness of (1.8 ± 0.6) cm, a middle width of (2.7 ± 0.4) cm. Its articular facet was toroid, superficial and cavate in shape, and exposed inwardsly and upwardsly, and had a extraversion angel of (39.2 ± 1.3)°. The anterior tibial recurrent artery directly began from anterior tibial artery, accounting for 93.3%. Its initiation point was (4.5 ± 0.7) cm inferior to apex of fibular head. Its main trunk ran through the deep surface of anterior tibial muscle, and ran forwards, outwards and upwards with sticking to the lateral surface of proximal tibia. Its main trunk had a length of (0.5 ±0.2) cm and a outer diameter of (2.0 ± 0.4) mm. Its accompanying veins, which had outer diameters of (2.1 ± 0.5) mm and (2.6 ± 0.4) mm, entry into anterior tibial vein. It constantly gave 1-2 fibular head branches which had a outer diameter of (1.7 ± 1.3) mm at (1.0 ± 0.4) cm from the initiation point. The internal anterior malleolar artery which began from anterior tibial artery or dorsal pedal artery had a outer diameter of (1.6 ± 0.4) mm. Its accompanying veins had outer diameters of (1.3 ± 0.5) mm and (1.1 ± 0.4) mm. Conclusion The blood supply compound flap based on fibular head had a possibil ity to rebuild internal malleolus. Its articular facet was characterized as the important anatomical basis to rebuild internal malleolus.

          Release date:2016-09-01 09:14 Export PDF Favorites Scan
        • ANATOMIC STUDY ON HOOK OF HAMATE BONE

          Objective To study the hook of hamate bone by anatomy and iconography methods in order to provide information for the cl inical treatment of injuries to the hook of hamate bone and the deep branch of ulnar nerve. Methods Fifty-two upper l imb specimens of adult corpses contributed voluntarily were collected, including 40 antisepticized old specimens and 12 fresh ones. The hook of hamate bone and its adjacent structure were observed. Twentyfour upper l imbs selected randomly from specimens of corpses and 24 upper l imbs from 12 healthy adults were investigated by computed tomography (CT) three-dimensional reconstruction, and then related data were measured. The measurement results of24 specimens were analyzed statistically. Results The hook of hamate bone is an important component of ulnar carpal canal and carpal canal, and the deep branch of ulnar nerve is located closely in the inner front of the hook of hamate bone. The flexor tendons of the forth and the l ittle fingers are in the innermost side, closely l ie next to the outside of the hook of hamate bone. The hamate bone located between the capitate bone and the three-cornered bone with wedge-shaped. The medial-, lateral-, and front-sides are all facies articularis. The hook of hamate bone has an approximate shape of a flat plate. The position migrated from the body of the hamate bone, the middle of the hook and the enlargement of the top of the hook were given the names of “the basis of the hook”, “the waist of the hook”, and “the coronal of the hook”, respectively. The short path of the basement are all longer than the short path of the waist. The long path of the top of the hook is the maximum length diameter of the hook of hamate bone, and is longer than the long path of the basement and the long path of the waist. The iconography shape and trait of the hook of hamate bone is similar to the anatomy result. There were no statistically significant differences (P gt; 0.05) between two methods in the seven parameters as follows: the long path of the basement of the hook, the short path of the basement of the hook, the long path of the waist of thehook, the short path of the waist of the hook, the long path of the top of the hook, the height of the hook, of hamate bone, and the distance between the top and the waist of the hook. Conclusion The hook of hamate bone can be divided into three parts: the coronal part, the waist part, and the basal part; fracture of the hamate bone can be divided into fracture of the body, fracture of the hook, and fracture of the body and the hook. Facture of the hook of hamate bone or fracture unnion can easily result in injure of the deep branch of ulnar nerve and the flexor tendons of the forth and the l ittle fingers. The measurement results of CT threedimensional reconstruction can be used as reference value directly in cl inical treatments.

          Release date:2016-08-31 05:47 Export PDF Favorites Scan
        • Real-time intraoperative anatomy study of 200 cases of superior mesenteric vessels and its tributaries: A single-center prospective cohort study

          ObjectiveTo explore the prevalence and adjacency of the tributaries of superior mesenteric vessel. MethodsThis study is a prospective study. The patients with right-sided colonic malignant tumor who underwent laparoscopic complete mesocolon excision at the Division of Colorectal Surgery of Peking Union Medical College Hospital from July 2016 to September 2022 were collected. The real-time observation and evaluation of vascular anatomy was performed by the operator and recorded by a resident. The continuous variables without a normal distribution were summarized as median (P25, P75). The categorical variables were presented as number (%). ResultsA total of 200 patients were enrolled, including 114 males and 86 females, with an age of 63.5 (53.5, 72.0) years. The prevalence of ileocolic artery and vein was 98.0% (196/200) and 98.5% (197/200), respectively. There were 168 (86.2%) cases of the ileocolic vein accompanied the course of the ileocolic artery at the origin in 195 patients with simultaneous presence of ileocolic artery and vein. The right colic artery and vein was present in 39.5% (79/200) and 18.5% (37/200) patients, respectively. The prevalence of the middle colic artery and vein was 96.5% (193/200) and 90.5% (181/200), respectively. And the prevalence of the middle colic vein accompanied the path of the middle colic artery at the root was 67.8% (118/174) in the 174 patients with simultaneous presence of middle colic artery and vein. The trunk length of the middle colic artery was 2.2 (1.6, 3.2) cm. The Henle trunk was present in 185 (92.5%) cases, with a trunk length of 1.00 (0.50, 1.40) cm, and its lower edge was 2.80 (2.20, 3.30) cm from the junction of the pancreatic head and the horizontal part of the duodenum.ConclusionsThe results from the data analysis of this study suggest that the ileocolic artery and vein are present most constantly with a high incidence of the ileocolic vein accompanied the course of the ileocolic artery at the origin of superior mesenteric vessels. Therefore ileocolic artery and vein are expected to serve as an optimal anatomical landmarks for the caudal-to-cranial medial approach in laparoscopic complete mesocolon excision.

          Release date:2025-02-08 09:34 Export PDF Favorites Scan
        • Sectional observation on optic canal and intracanalicular structures

          Objective To study the human optic canal and its inner structures, and provide anatomic knowledge of this area for optic nerve decompression and further study in pathologic mechanisms of indirect optic nerve injury. Methods Serial sections of the 18 optic canals of adults were made at orbital, middle and cranial parts. Quantitative measurements of the canal wall thickness, canal transverse area, dural sheath transverse area, optic nerve transverse area, and subarachnoid space transverse area were done by means of IMAGEPRO morphometric analysis system. Subarachnoid space transverse area to canal transverse area ratio (SSTA/CTA) and subarachnoid space transverse area to dural sheath transverse area ratio (SSTA/DSTA) were calculated. Results The middle portion of medial wall is the thinnest part of the canal (0.35plusmn;0.48)mm. The middle part of the optic canal was the narrowest part and the transverse area was (17.54plusmn;2.12)mm2. From cranial end to orbital end, SSTA/CTA, SSTA/DSTA and the subarachnoid space transverse area became smaller and smaller. Conclusion Since the potential space is limited, even a tiny amount of blood or sweling of the nerve may cause optic compression. Due to the potential space gradually decreases from cranial end to orbital end and the narrowest portion of the canal is in the middle part, the middle part and the anterior part of the optic canal are critical in optic narve decompression. (Chin J Ocul Fundus Dis,1999,15:24-26)

          Release date:2016-09-02 06:08 Export PDF Favorites Scan
        7 pages Previous 1 2 3 ... 7 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜