Objective To introduce the recent advances of the application of computer technology in tissue engineering. Methods The recent original articlesrelated to computer technology, medical image technology, computer-aided design, the advanced manufacture technology were summarized and systematically analyzed.Results Computer-aided tissue engineering is a new fieldon tissue engineering. It is the future direction of tissue engineering study. This article reviews recent development of medical CT/MRI scanning, three-dimensional reconstruction, anatomical modeling, computeraided design, computer-aided manufacturing, rapid prototyping, RP manufacturing of tissue engineering scaffolds and computeraided implantation.Conclusion Computer-aided tissue engineering can be used in scaffolds design and fabrication, computer-aided artificial tissue implantation. It is a new field on tissue engineering.
【Abstract】 Objective To observe the distribution feature of nerve bundles in C7 nerve anterior and posterior division end. Methods The brachial plexus specimen was harvested from 1 fresh adult cadaver. After C7 nerve was confirmed, the distal end of anterior and posterior division was dissected and embedded by OCT. Then the samples were serially horizontally sliced with each 10 μm deep. After acetylcholinesterase (AChE) histochemical staining, the stain characteristics of different nerve fiber bundles were observed and amount of the nerve fiber bundles were counted under optic-microscope. At last, the imaging which were collected were three-dimensional (3-D) reconstructed by using Amira 4.1 software. Results There was no obvious difference in the stain between the anterior and posterior divisions. The running of the nerve fiber bundles were dispersive from proximal end of nerve to distal end of nerve. Nerve fiber bundles of anterior division were mainly sensor nerve fiber bundles, which located in medial side. Nerve fiber bundles of posterior division were mainly moter nerve fiber bundles, having no regularity in the distribution of nerve fiber bundles. The total number of nerve fiber bundles in distal end of anterior division was 7.85 ± 1.04, the number of motor nerve fiber bundles was 2.85 ± 0.36, and the number of sensor nerve fiber bundles was 5.13 ± 1.01. The total number of nerve fiber bundles in distal end of posterior division was 9.79 ± 1.53, the number of motor nerve fiber bundles was 6.00 ± 0.69, and the number of sensor nerve fiber bundles was 3.78 ± 0.94. There were significant differences in the numbers of motor and sensor nerve fiber bundles between anterior and posterior divisions (P lt; 0.05). The microstructure 3-D model was reconstructed based on serial slice through Amira 4.1. The intercross and recombination process of nerves bundles could be observed obviously. The nerve bundle distribution showed cross and combination. Conclusion Nerve fiber bundles of anterior division are mainly sensor nerve fiber bundles and locate in medial side. Nerve fiber bundles of posterior division are mainly motor nerve fiber bundles, which has no regularity in the distribution of nerve fiber bundles. The 3-D reconstruction can display the internal structure feature of the C7 division end.
ObjectiveTo explore potential value of three-dimensional reconstruction technique for preoperative evaluation of hepatic alveolar echinococcosis. MethodsTwenty-one cases of hepatic alveolar echinococcosis proved by postoperative pathological examination in Affiliated Hospital of Qinghai University from October 2013 to March 2014 were analyzed retrospectively. The three periods of patients’ liver dynamic thin layerCTscan images were collected and imported in three-dimensional reconstruction software by DICOM format. The volume of the virtual resected liver tissue was calculated by software, and then was compared with the actual resected liver tissue volume. ResultsThe resected liver volume was (761.94±505.77) mL and (756.19±501.78) mL in the virtual surgery and in the veritable surgery, respectively. The proportion of resected liver in the total liver was (39.27±18.75)% and (38.95±16.99)% in the virtual surgery and in the veritable surgery, respectively. The resected liver volume had no significant difference between the virtual surgery and veritable surgery (P>0.05), which a positive relation (r=0.989, P<0.001). ConclusionThe limited preliminary data in this study show that three-dimensional reconstruction technique and virtual planning system for surgery could accurately guide resection of lesion and provide preoperative guidance of accurate liver resection for hepatic alveolar echinococcosis.
Objective To employ spinal virtual surgery system (SVSS) for preoperative planning of thoracolumbar pedicle screw fixation, and to establ ish the measurement method for pedicle screw-related parameters. Methods Eight thoracicand lumbar spine specimens (T11-L3) were selected. First of all, SVSS was used for the preoperative planning of pedicle screw and the parameters of both sides of pedicle were measured in every vertebral segment, including angle of axial view (Aa), angle of sagittal view (As), x-direction entrance (XE), total pedicle length of axial view (TLa), total pedicle length of sagittal view (TLs), pedicle height (PH), pedicle width (PW), and pedicle spongy width (PSW). Then the corresponding parameters of the right and left pedicle screws of the specimens were measured actually. Finally, its accuracy was verified by comparing the data by virtual measurement and actual measurement. Results There was no significant difference in the parameters of virtual measurement (Aa, As, TLa, TLs, XE, PW, PSW, and PH) and actual measurement (Aa, As, TLa, XE, PW, PSW, and PH) between the right and left sides (P gt; 0.05). Except XE of the L3 vertebral segment and PSW of T11 and T12 vertebral segments (P lt; 0.05), the differences in other parameters of other segments were not significant (P gt; 0.05). Conclusion After statistical analysis and comparison, the feasibil ity of preoperative planning of thoracolumbar pedicle screw fixation and the accuracy of the measurement of the SVSS is verified.
Objective To study digitize design of custom-made radial head prosthesis and to verify its matching precision by the surgery of preoperative three-dimensional (3-D) virtual replacement. Methods Six healthy adult volunteers (3 males and 3 females, aged 25-55 years with an average of 33 years) received slice scan of bilateral elbow by Speed Light 16-slice spiral CT. The CT Dicom data were imported into Mimics 10.0 software individually for 3-D reconstruction image, and the left proximal radial 3-D image was extracted, the mirror of the image was generated and it was split into 2 pieces: the head and the neck. The internal diameter and the length of the radial neck were obtained by Mimics 10.0 software measurement tools. In Geomagic Studio 12 software, the radial head was simulated to cover the cartilage surface (1 mm thickness) and generated to an entity. In UG NX 8.0 software, the stem of prosthesis was designed according to the parameters above and assembled head entity. Each custom-made prosthesis was performed and verified its matching precision by the surgery of preoperative 3-D virtual replacement. Results Comparing the morphology of 6 digitize custom-made prostheses with ipsilateral radial heads by the 3-D virtual surgery, the error was less than 1 mm. The radial head prosthesis design on basis of the contralateral anatomy was verified excellent matching. Conclusion The 3-D virtual surgery test and the digitized custom-made radial head prosthesis will be available for clinical accurate replacement.
Objective To investigate the cl inical results of the flap pedicled with collateral branch of descendingrarus of lateral circumflex femoral artery with digital three-dimensional reconstruction technique for lower l imb soft tissue defects. Methods Between March 2009 and January 2010, 7 patients with lower l imb soft tissue defects were treated with free flap pedicled with collateral branch of descending rarus of lateral circumflex femoral artery. There were 6 males and 1 female with an age range from 6 to 51 years. They were injured by traffic accident (4 cases), or by object hit from height (3 cases). The locations were foot in 2 cases, ankle in 2 cases, and anterior tibia in 3 cases. The disease duration was 8 hours to 40 days (mean, 20 days). All the cases compl icated by exposure of tendons or bones. The areas of soft tissue defect ranged from 12 cm × 7 cm to 20 cm × 14 cm. Free flaps were transplanted at 4 to 16 days after symptomatic treatment. Before operation, all the flaps were designed with digital three-dimensional reconstruction technique. The size of flaps ranged from 15 cm × 9 cm to 22 cm × 16 cm The donor sites were closed directly in all cases. Results All the flaps survived. The wounds and incisions at donor sites healed by first intention. All the patients were followed up 6 to 12 months. The texture, appearance, and function of the flaps were satisfactory, and no compl ication occurred. All the flaps had protective sensation, which could meet the requirement of the daily l ife. The function of ankle was satisfactory with normal walk; the extension was 19-22° and the flexion was 30-36°. No obvious scar formed at donor sites. Conclusion The flap pedicled with collateral branch of descending rarus of lateral circumflex femoral artery has rel iable blood supply, easy operation, l ittle influence on the donor site, and high success rate with digital three-dimensional reconstruction technique. It is an excellent option for repairing lower l imb soft tissue defects.
Objective To explore the histochemical staining for distinguishing and local izing nerve fibers and fascicles at histological level in three-dimensional reconstruction of peri pheral nerves. Methods The right median nerve was harvested from one fresh cadaver and embedded in OCT compound. The sample was serially horizontally sl iced with 6 μm thickness. All sections were stained with Karnovsky-Roots method (group A, n=30) firstly and then stained with toluidine blue (group B, =28) and Ponceau 2R (group C, n=21) in proper sequence. The results of each step were taken photos (× 100). After successfully stitching, the two-dimensional panorama images were compared, including texture feature, the number and aver gray level of area showing acetylchol inesterase (AchE) activity, and result of auto microscopic medical image segmentation. Results In groups A, B, and C, the number of AchE-positive area was (21.63 ± 4.06)× 102, (20.64 ± 3.51)× 102, and (20.54 ± 5.71)× 102, respectively, showing no significant difference among 3 groups (F=0.64, P=0.54); the mean gray level was (1.41 ± 0.06)× 102, (1.10 ± 0.05)× 102, and (1.14 ± 0.07)× 102, respectively, showing significant differences between group A and groups B and C (P lt; 0.001). In the image of group A, only AchE-positive area was stained; in the image of group B, myelin sheath was obscure; and in the image of group C, axons and myelin sheath could be indentified, the character of nerve fibers could be distinguished clearly and accurately, and the image segmentation of fascicles could be achieved easier than other 2 images. Conclusion The image of Karnovsky-Roots-toluidine blue-Ponceau 2R staining has no effect on the AchE-positive area in the image of Karnovsky-Roots staining and shows better texture feature. This improved histochemical process may provide ideal image for the three-dimensional reconstruction of peri pheral nerves.
The geometric bone model of patients is an important basis for individualized biomechanical modeling and analysis, formulation of surgical planning, design of surgical guide plate, and customization of artificial joint. In this study, a rapid three-dimensional (3D) reconstruction method based on statistical shape model was proposed for femur. Combined with the patient plain X-ray film data, rapid 3D modeling of individualized patient femur geometry was realized. The average error of 3D reconstruction was 1.597–1.842 mm, and the root mean square error was 1.453–2.341 mm. The average errors of femoral head diameter, cervical shaft angle, offset distance and anteversion angle of the reconstructed model were 0.597 mm, 1.163°, 1.389 mm and 1.354°, respectively. Compared with traditional modeling methods, the new method could achieve rapid 3D reconstruction of femur more accurately in a shorter time. This paper provides a new technology for rapid 3D modeling of bone geometry, which is helpful to promote rapid biomechanical analysis for patients, and provides a new idea for the selection of orthopedic implants and the rapid research and development of customized implants.
Objective To investigate the cl inical directive significance of three-dimensional reconstruction of CT in treating mandibular angle hypertrophy. Methods Between March 2009 and January 2011, 18 patients with mandibular angle hypertrophy were treated using the three-dimensional reconstruction technology of CT. All patients were female, aged20-36 years with an average of 25 years. Eighteen patients included: 14 single mandibular angle hypertrophy, 3 mandibular angle hypertrophy with masseter hypertrophy, and 1 mandibular angle hypertrophy with bilateral asymmetry; 6 cases of ptosis of mandibular angle, 9 cases of prominent mandibular angle, and 3 cases of introversive mandibular angle. According to the types of mandibular angle hypertrophy, the surgical methods could be correctly chosen. The procedure was planned and simulated; the osteotomy l ine was marked and the osteotomy was measured on the workstations of three-dimensional reconstruction. Results No fracture of mandible occurred in the operation. Facial nerve temporary attack occurred in 1 case and recovered at 3 months after operation. All patients were followed up 6-12 months (mean, 7.6 months). After 6 months of operation, the effectiveness was satisfactory in 15 cases, basically satisfactory in 2 cases, and unsatisfactory in 1 case (bilateral asymmetry). Conclusion Based on three-dimensional reconstruction technology of CT, surgical design performed on the model will promote the accuracy of operation. Basically symmetrical appearances can be achieved with satisfactory results.
【Abstract】ObjectiveTo evaluate the value of MR imaging with a contrast-enhanced multi-phasic isotropic volumetric interpolated breath-hold examination (VIBE) in diagnosis of primary liver carcinoma. MethodsThirty-two consecutive patients with surgical-pathologically confirmed 42 foci of primary carcinoma of liver underwent comprehensive MR examination of the upper abdomen, routine two-dimensional (2D) T1WI and T2WI images were acquired before administration of Gd-DTPA for contrast enhancement. Then, contrast-enhanced multi-phasic VIBE was acquired followed by 2D T1WI images. The lesion appearances on hepatic arterial, portal venous and equilibrium phases of VIBE sequence were carefully observed along with delineation of hepatic arterial and portal venous structures. The lesion detection rates and lesion characterization ability were compared among various MR sequences. Results33(78.6%), 30(71.4%), 38(90.5%) and 42(100%) foci were displayed respectively on T2WI, non-enhanced T1WI, enhanced T1WI and enhanced 3D-VIBE images (P<0.05). The hepatic arterial anatomy of 30 patients (93.8%) and the portal venous structure of 31 patients (96.9%) were clearly depicted on enhanced 3D-VIBE images. Using MIP and MPR reconstruction techniques, the feeding arteries of 14 foci and draining vein of 12 foci were clearly displayed.ConclusionHigh-quality 3D-VIBE images are not only better than 2D images in lesion detection and characterization for primary liver carcinoma, but also able to provide much more information about hepatic vascular anatomy.