Objective To investigate the psychological stress level and its influence factors of the motor transport soldiers in Military Station C at high altitude, and provide the data basis for the proper stress management. Methods A cluster random sampling was performed on the motor transport soldiers in Military Station C. And SCL-90 were adopted to measure the psychological stress level of the motor transport soldiers while the self-made basic information questionnaire was conducted to collect the information of demographic characteristic, length of military service, driving years. Then the effect of basic information on the psychological stress level was analyzed. Results 1 692 soldiers in Military Station C were enrolled in this survey. The scores of somatization, depression, psychosis and the total score of the SCL-90 of these soldiers were higher than the norm (allP values<0.001). The scores of interpersonal relationship, depression, terror and stubborn of the only child were higher than those of non-only-child (P=0.034,P=0.039,P=0.025,P=0.002). The scores of interpersonal relationship and anxiety were positively correlated with their education levels (P=0.008,P=0.026). The compulsory servicemen had higher scores of anxiety, terror and psychosis (P<0.001,P=0.026,P=0.001) but lower scores of somatization (P<0.001) compared with the sergeants. Those who suffered from neck discomfort had higher somatization scores (P<0.001). Conclusion Some factors involved in psychological stress level of the motor transport soldiers in Military Station C are higher than the norm, suggesting that more attention should be paid to their psychological states by the army administrators and the health management department, especially the only child, new recruits, junior soldiers and those who suffers from somatization discomfort.
Objective To investigate the effect of extract of ginkgo biloba leaves (EGb50) on the prol iferation of SCs cultured in vitro. Methods The SCs were isolated from 3-day-old SD rats’ sciatic nerves by the method of enzyme gradationdigestion (n=20) and the purified 2nd passage of SCs were divided into 2 groups: the experimental group, in which SCs were cultured in FBS-DMEM medium with EGb50 (terminal concentration: 50 μg/mL); the control group, in which SCs were cultured in the FBS-DMEM medium without EGb50. The absorbance (A) value was detected by the 2, 3-bis- (2-methoxy-4-nitro-5- sulfophenyl)-2H-tetrazol ium-5-carboxanil ide (XTT) method 1, 3, 5, 7 and 9 days after culture, then the growth curves was drawn. Cell cycle was detected by flow cytometry (FCM). Disintegration per minute (DPM) of SCs was detected by the method of 3H-thymine nucleoside (3H-TdR) 2 and 3 days after culture and nerve growth factor (NGF) synthesis in SCs culture media was detected by ELISA method. Results Most SCs were spindle-shaped with a purity above 90%. XTT detection showed that A value of SCs in the control group was gradually increased 3 days after culture, reached the peak 5 days after culture and gradually decreased from then; the A value in the experimental group experienced the similar changes, but it was higher than that in the control group at each time point (P lt; 0.01). 3H-TdR showed that the DPM of the experimental group was 1 961.78 ± 231.13 and 4 601.51 ± 605.08 at 2 and 3 days after culture, while for the control group, the A value was 1 347.15 ± 121.57 and 3 740.42 ± 158.73 at the same time point, indicating a significant difference between two groups (P lt; 0.01). FCM observation indicated that the SCs prol iferation index of the experimental group and the control group was 18.6% ± 3.2% and 9.7% ± 2.9%, indicating a significant difference between two groups (P lt; 0.01). ELISA observation showed that the NGF concentration in the experimental and the control group was (0.065 6 ± 0.003 9) ng/mL and (0.038 6 ± 0.003 6) ng/mL, indicating a significant difference (P lt; 0.01). Conclusion EGb50 is capable of enhancing the prol iferation of SCs cultured in vitro, which may be one of the important mechanisms to promote peripheral nerve regeneration.
Objective To investigate the feasibil ity of inducing canine BMSCs to differentiate into epithel ial cells in vitro with epithel ial cell conditioned medium (ECCM). Methods Five mL BMSCs were obtained from il iac spine of a healthy adult male canine with weighing 10 kg, and then isolated and cultured. The oral mucosa was harvested and cut into 4 mm × 4 mm after the submucosa tissue was el iminated; ECCM was prepared. BMSCs of the 2nd passage were cultured and divided into two groups, cultured in ECCM as experimental group and in L-DMEM as control group. The cell morphological characteristics were observed and the cell growth curves of two groups were drawn by the continual cell counting. The cells were identified by immunohistochemical staining through detecting cytokeratin 19 (CK-19) and anti-cytokeratin AE1/AE3 on the21st day of induction. The ultra-structure characteristics were observed under transmission electron microscope. Results The cells of two groups showed long-fusiform in shape and distributed uniformly under inverted phase contrast microscope. The cell growth curves of two groups presented S type. The cell growth curve of the experimental group was right shifted, showing cell prol iferation inhibition in ECCM. The result of immunohistochemical staining for CK-19 and anti-cytokeratin AE1/AE3 was positive in the experimental group, confirming the epithel ial phenotype of the cells; while the result was negative in the control group. The cells were characterized by tight junction under transmission electron microscope. Conclusion The canine ECCM can induce allogenic BMSCs to differentiate into epithel ial cells in vitro.
Objective To investigate the cl inical effect of MSCs transplantation derived from human umbil ical cord on bone nonunion. Methods From December 2005 to December 2007, 72 patients with traumatic bone nonunion were treated. Auto-il iac bone transplantation was used in 36 patients (group A), including 27 males and 9 females, aging (34.0 ± 2.1) years; including 18 cases of femoral fracture and 18 cases of tibia fracture; and the time of bone nonunion being (9.1 ± 1.7)months. Percutaneous MSCs transplantation derived from human umbil ical cord was used in 36 patients (group B), including 28 males and 8 females, aging (36.0 ± 1.6) years; including 18 cases of femoral fracture and 18 cases of tibia fracture; and the time of bone nonunion being (6.4 ± 1.9) months. There were no statistically significant differences in general data between two groups (P gt; 0.05). In group A, the site of bone nonunion was filled with relevant auto-il iac bone. In group B, the mixture of 6-8 mL platelet-rich plasma prepared by centrifugal izing venous blood and 1 × (106-107) P5 MSCs extracted from human umbil ical cord denoted by volunteers was injected into the region of bone nonunion with 0.2 g demineral ized bone powder. Results Incision healed by first intention in group A. No puncture, deep infection, rejection and general fever reaction occurred in group B. All patients in two groups were followed up for (13.2 ± 4.6) months. No loosening and breakage of internal fixation were observed in two groups. The motil ity and function of hip, knee and ankle were good. The time of bone union was (10.3 ± 2.8) months in group A and (5.6 ± 0.8) months in groups B, showing significant difference between two groups (P lt; 0.05). Conclusion The percutaneous MSCs transplantation derived from human umbil ical cord is more effective on bone nonunion than the traditional treatment, it is easily-to-operate, safe, rel iable, and rapid for union. It is one of effective methods in treating bone nonunion.
ObjectiveBenign familial epilepsies that present themselves in the first year of life include benign familial neonatal epilepsy (BFNE), benign familial neonatal-infantile epilepsy (BFNIE) and benign familial infantile epilepsy (BFIE). We aim to investigate gene mutations and the relationship between genotypes and clinical phenotypes in benign familial epilepsies in the first year of life.MethodsWe recruited families with benign familial epilepsies in the first year of life at Peking University First Hospital from September 2006 to January 2018. Clinical information and blood samples were obtained from probands and their family members. For BFIE families, mutation screening of PRRT2 was performed by using the polymerase chain reaction (PCR) and Sanger sequencing at first. The PRRT2 mutation negative probands of BFIE families were further screened for pathogenic mutations by targeted next-generation sequencing. The probands of BFNE and BFNIE families were screened for pathogenic mutations by targeted next-generation sequencing.ResultsA total of 89 families with benign familial epilepsies in the first year of life were collected. Of the 89 families, 4 were classified as BFNE, 7 as BFNIE, and 78 as BFIE. Genetic testing led to the identification of gene mutations in 68 families (76.4%), including 50 families had PRRT2 mutations (hotspot mutation c.649dupC was detected in 32 families; c.649delC was detected in 6 families), 9 families had KCNQ2 mutations, 8 families had SCN2A mutations, and one family had GABRA6 mutation. In the 4 BFNE families, causative mutations were only found in KCNQ2, which was identified as the causative gene in 3 families. The remaining one BFNE family was not detected with any pathogenic mutation. All 7 BFNIE families had identifiable gene mutations, KCNQ2 was found in 3 families, SCN2A in 3 families, and PRRT2 in one family. In the 78 BFIE families, gene mutations were identified in 58 families (74.4%), with PRRT2 mutations found in 49 families (62.8%), SCN2A mutations found in 5 families, KCNQ2 mutations found in 3 families, and a novol GABRA6 mutation found in one family. Twenty BFIE families were not identified with any gene mutations. In 78 BFIE families, 18 were subclassified as infantile convulsions with paroxysmal choreoathetosis syndrome(ICCA). 17 of 18 ICCA families were detected with PRRT2 mutations (17/18, 94.4%). The remaining ICCA family was not detected with any pathogenic mutation.ConclusionsOur results confirmed that mutations in KCNQ2, SCN2A, and PRRT2 are major genetic causes of benign familial epilepsy in the first year of life in the Chinese population. KCNQ2 is the major gene related to BFNE. PRRT2 is the main gene responsible for BFIE. KCNQ2 and SCN2A mutations are common in BFNIE families. GABRA6 mutation might be a new cause of BFIE. Identification of underlying gene mutation can be helpful for clinical diagnosis and judgement of the prognosis.
Objective To explore the label ing efficiency and cellular viabil ity of rabbit BMSCs labeled with different concentrations of superparamagnetic iron oxide (SPIO) particles, and to determine the feasibil ity of magnetically labeled stem cells with MR imaging. Methods The BMSCs were collected from il iac marrow of 10 adult rabbits (weighing 2.5-3.0 kg) and cultured. The SPIO-poly-L-lysine compound by different ratios mixed with medium, therefore, the final concentration of Fe2+ was 150 (group A), 100 (group B), 50 (group C) and 25 μg (group D) per mL, respectively, the 3rd generation BMSCs culture edium was added to lable; non-labeled cells served as a control (group E). MR imaging of cell suspensions was performed by using T1WI and T2WI sequences at a cl inical 1.5 T MRI system. Results BMSCs were efficiently labeled with SPIO, labeled SPIO particles were stained in all cytoplasms of groups A, B, C and D. With the increasing of Fe2+ concentration, blue dye particles increased. The staining result was negative in group E. The cell viabil ity in groups A, B, C, D and E was 69.20% ± 6.11%, 80.41% ± 2.42%, 94.32% ± 0.67%, 96.24% ± 0.34% and 97.43% ± 0.33%, respectively. There were statistically significant differences between groups A, B and groups C, D and E (P lt; 0.05), and between group A and group B (P lt; 0.05). T1WI images had no specific difference among 5 groups, T2WI images decreased significantly in groups A, B, C, decreased sl ightly in group D, and had l ittle change in group E. The T2WI signal intensities of groups A, B, C, D and E were 23.37 ± 6.21, 26.73 ± 3.60, 29.63 ± 2.82, 45.03 ± 6.76 and 783.15 ± 7.38, respectively, showing significant difference between groups A, B, C, D and group E (P lt; 0.05), and between groups A, B, C and group D (Plt; 0.05). Conclusion BMSCs can be easily and efficiently labeled by SPIO without interference on the cell viabil ity in labled concentration of 20-50 μg Fe2+ per mL. MRI visual ization of SPIO labeled BMSCs is feasible, which may be critical for future experimental studies.
Objective To explorer the survival time of autogeneic BMSCs labeled by superparamagnetic iron oxide (SPIO) in rabbit intervertebral discs and the rule of migration so as to prove bases of gene therapy preventing intervertebral disc degeneration. Methods Twelve rabbits were used in this experiment, aged 8-10 weeks, weighing 1.5-2.0 kg and neglecting their gender. BMSCs were separated from rabbits bone marrow by density gradient centrifugation and cultivated, and the 3rd generation of BMSCs were harvested and labeled with SPIO, which was mixed with poly-l-lysine. The label ing efficiency was evaluated by Prussian blue staining and transmission electron microscope. Trypanblau stain and MTT were performed to calculate the cell’ s activity. Rabbits were randomly divided into experimental group (n=8) and control group (n=4), the labeled BMSCs and non-labeled BMSCs (5 × 105/mL) were injected into their own intervertebral discs (L1,2, L2,3, L3,4 and L4,5), respectively. At 2, 4, 6 and 8 weeks, the discs were treated with Perl’s fluid to observe cell survival and distribution. Results The label ing efficiency of BMSCs with SPIO was 95.65% ± 1.06%, the cell activity was 98.28% ± 0.85%. There was no statistically significant difference in cell prol iferation within 7 days between non-labeled and labeled cells (P gt; 0.05). After 8 weeks of operation, the injected cells was al ive. ConclusionLabeled BMSCs with SPIO is feasible in vitro and in vivo, and the cells can survive more than 8 weeks in rabbit discs.
To investigate the effect of BMSCs on the repair of digestive tract injury and its mechanisms.Methods Recent l iterature on the effect of BMSCs on the repair of digestive tract injury was reviewed. Results BMSCs had the potency of self-repl ication, prol iferation and multipotential differentiation, which played an important role in the repair of digestive tract injury. The probable mechanisms included: BMSCs’ abil ity of migrating to the injured tissue and inhibiting the host immune response; BMSCs’ dedifferentiation and redifferentiation; BMSCs’ direct differentiation into the epithel ial cellsor the stem cells of digestive tract; BMSCs’ fusion with the stem cells or the mature epithel ial cells of digestive tract; BMSCs’ participation in the reconstruction of injured microenvironment. Conclusion BMSCs participates in the repair of digestive tract injury and has a bright future in the treatment of digestive system disease.
Objective To compare the effect of mosaicplasty, mosaicplasty with gene enhanced tissue engineering and mosaicplasty with the gels of non-gene transduced BMSCs in alginate on the treatment of acute osteochondral defects. Methods Western blot test was conducted to detect the expression of hTGF-β1, Col II and Aggrecan in 3 groups, namely hTGF-β1 transduction group, Adv-βgal transduction group and blank control group without transduction. Eighteen 6-month-old Shanghai mascul ine goats weighing 22-25 kg were randomized into groups A, B and C (n=6). BMSCs were isolatedfrom the autologous bone marrow of groups B and C, and were subcultured to get the cells at passage 3. In group B, the BMSCs were transduced with hTGF-β1. For the animals of 3 groups, acute cyl indrical defects 5 mm in diameter and 3 mm in depth were created in the weight bearing area of the medial femoral condyle of hind l imbs. In group A, the autologous osteochondral mosaicplasty was performed to repair the defect; in group B, besides the mosaicplasty, the dead space between the cyl indrical grafts and the host cartilage were injected with the suspension of hTGF-β1 gene transduced autogenous BMSCs in sodium alginate, and CaCl2 was dropped into it to form calcium alginate gels; in group C, the method was the same as the group B, but the BMSCs were not transduced. General condition of the goats after operation was observed, the goats were killed 12 and 24 weeks after operation to receive gross and histology observation, which was evaluated by the histological grading scale of O’Driscoll, Keeley and Salter. Immunohistochemistry and TEM observation were performed 24 weeks after operation. Results Western blot test showed the expression of the hTGF-β1, Col II and the Aggrecan in the hTGF-β1 transduction group were significantly higher than that of the Adv-βgal transduction and the blank control groups. All the goats survived until the end of experiment and all the wounds healed by first intention. Gross observation revealed the boundaries of the reparative tissue in group B were indistinct, with smooth and continuous surfaces of the whole repaired area; while there were gaps in the cartilage spaces of groups A and C. Histology observation showed the dead space between the cyl indrical grafts in group A had fibrocartilage-l ike repair tissue, fill ing of fibrous tissue or overgrowth of the adjacent cartilage; the chondrocytes in group B had regular arrangements, with favorable integrations; while the dead space between the cyl indrical grafts in group C had fibrocartilage-l ike repair tissue, with the existence of gaps. The histology scores of group B at different time points were significantly higher than that of groups A and C, and group C was better than group A (P lt; 0.05); for group B, significant difference was detected between 12 weeks and 24 weeks in the histology score (P lt; 0.05). Immunohistochemistry staining for Col II 24 weeks after operation showed the chondrocytes and lacuna of the reparative tissue in group B was obviously stained, while groups A and C presented l ight staining. TEM observation showed there were typical chondrocytes in the reparative tissue in group B, while parallel or interlaced arrangement collagen fiber existed in groups A and C. Conclusion Combining mosaicplasty with tissue engineering methods can solve theproblem caused by single use of mosaicplasty, including the poor concrescence of the remnant defect and poor integration with host cartilages.
Objective To investigate the effects of intermittent negative pressure on the mRNA expression of osteoprotegerin (OPG) and osteoprotegerin l igand (OPGL) in human BMSCs cultured in vitro. Methods BMSCs were isolated from adult marrow donated by 2 hip osteoarthritis patients with prosthetic replacement in January 2008 and cultured in vitro. The third passage cells were divided into experimental group and control group. The experimental group was induced by negative pressure intermittently for 2 weeks (pressure: 50 kPa, 30 minutes each time, twice per day) and the control groupwas routinely cultured. After 2 weeks of culture, cell morphology was observed by inverted phase contrast microscope, and the mRNA expressions of OPG and OPGL in BMSCs were analyzed by real-time PCR. Results The cell prol iferation speed of the experimental group was slower than that of the control group. The cell morph changed from shuttle to megagon with some prominences in experimental group and the cell morph kept shuttle in the control. The mRNA expression of OPG in experimental group increased significantly (P lt; 0.01) and the mRNA expression of OPGL in experimental group decreased significantly compared with control group (P lt; 0.01) 2 weeks later. Conclusion Intermittent negative pressure is capable of promoting the expression of OPG, while inhibiting the expression of OPGL in human BMSCs.