• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "Quantitative magnetic susceptibility image" 1 results
        • Research progress on quantitative magnetic susceptibility imaging reconstruction method based on improved U-network model

          Quantitative magnetic susceptibility imaging (QSM) is an imaging method based on magnetic resonance imaging (MRI) phase signal processing and inversion to obtain tissue magnetic susceptibility distribution, which can generate images reflecting the magnetic characteristics of tissues. QSM reconstruction process is complex, in which dipole inversion stage is the most challenging and decisive link, and traditional methods are easily affected by pathological conditions at this stage, resulting in artifacts and deviations. With the development of deep learning and machine vision technology, using U-network (U-Net) model to improve dipole inversion process can effectively avoid the shortcomings of traditional algorithms. In this paper, the application of the improved model based on U-Net architecture in dipole inversion from 2020 to now is summarized. Firstly, the theoretical concept of QSM is introduced. Secondly, the existing improved models based on U-Net architecture are divided into three categories: improved U-Net based on structural optimization, improved U-Net based on physical constraints and improved U-Net based on improving generalization ability, and their main characteristics and design starting points are sorted out. Finally, the development trend of the future model is prospected and summarized. To sum up, it is expected that the difficulties and challenges of dipole inversion will be solved, the accuracy of QSM images will be improved, and support for disease-aided diagnosis will be provided by summarizing and comparing different improved U-Net models in this paper.

          Release date: Export PDF Favorites Scan
        1 pages Previous 1 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜