• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "Osteoblasts" 29 results
        • EXPERIMENTAL STUDY OF PERIOSTEAL OSTEOBLASTS IN REPAIRING BONE DEFECTS

          Abstract An experiment was carried out to investigate the possibility of the establishment of an osteoblasts bank which could supply osteoblasts in repairing bone defect. Osteoblasts were isolated from thetibial periosteum of eight New-Zealand rabbits and cultured in votro. A bone defect, 1.5cm in length was made in both radii of each of the 8 rabbits. The cultivated osteoblasts, gelfoam as a carrier were randomly implanted into the defects of the radii of rabbits. Accordingly, the contralateral radial defects wereimplanted with gelfoam absorbed with the Hanks solution as control. The healing of bone defects was evaluated by roentgenographic examination at 2, 4, 8 and 12 weeks after operation, respectively. It was shown that the implanted cells had osteogenetic capability and could be possible to promote healing of the bone defects. It was suggested that further study needed to be carried out in this field.

          Release date:2016-09-01 11:10 Export PDF Favorites Scan
        • CELLULAR COMPATIBILITY OF THREE NATURAL XENOGENEIC BONE DERIVED BIOMATERIALS

          OBJECTIVE: To evaluate the cellular compatibility of three natural xenogeneic bone derived biomaterials. METHODS: Three types of natural xenogeneic bone derived biomaterials were made with physical and chemical treatment, composite fully deproteinized bone(CFDB), partially deproteinized bone(PDPB) and partially decalcified bone(PDCB). Three types biomaterials were cocultured with human embryonic periosteal osteoblasts. The cell growth, attachment, cell cycle, alkaline phosphatase activity were detected to evaluate the cellular compatibility to biomaterials. RESULTS: Osteoblasts attached on all three biomaterials and grew well, the effect of three biomaterials on cell proliferation was PDCB gt; PDPB gt; CFDB. The cell cycle was not obviously affected by three biomaterials. The effect of three biomaterials on alkaline phosphatase activity of osteoblasts was PDCB gt; PDPB gt; CFDB. CONCLUSION: CFDB,PDPB,PDCB have good cellular compatibility without cytotoxic and tumorigenicity, CFDB is the best. The three biomaterials can be used as scaffold materials of bone tissue engineering.

          Release date:2016-09-01 10:21 Export PDF Favorites Scan
        • BIOLOGICAL CHARACTERISTICS OF MESENCHYMAL STEM CELLS IN VITRO DERIVED FROM BONE MARROW OF BANNA MINIPIG INBRED LINE

          OBJECTIVE: To isolate and characterize mesenchymal stem cells (MSCs) derived from bone marrow of Banna minipig inbred line (BMI). METHODS: BMI-MSCs was isolated from bone marrow by density gradient centrifugation and cultured in DMEM (containing 15% bovine serum) at 37 degrees C with humidified 5% CO2. These cultured stem cells were characterized in clonal growth, expression of specific markers and capability of differentiation. RESULTS: Mesenchymal stem cells were proliferative and could be expanded rapidly in vitro. Clonal growth of these cells can be observed when small amount of cells was inoculated. These cells were SH2, SH3, SH4, SB10 and SB21 positive. And it was proved that these cells possess osteo-differentiation ability, up-regulated alkaline phosphatase expression and calcium secretion after osteosupplement was added into the media for several days. CONCLUSION: Mesenchymal stem cells derived from bone marrow of BMI possess the general characters of stem cell.

          Release date:2016-09-01 10:14 Export PDF Favorites Scan
        • CELLULAR SOCIOLOGICAL CHARACTERISTICS OF OSTEOBLASTS

          There is a great hope to treat long bone defects with bioactive artificial bone constructed by osteoblasts and biomaterials, in which the key point is to provide an optimum environment for the normal function of osteoblasts. The cellular sociological characteristics of osteoblasts were summarized and it was suggested that the ideal bioactive artificial bone should be composed of inorganic and organic materials together with cellular components such as osteoblasts and vascular endothelial cells, and combined with control release of growth factors, following its implantation it could be vascularized very soon and merged with the host bone by bony consolidation.

          Release date:2016-09-01 11:07 Export PDF Favorites Scan
        • ADVANCE IN DIFFERENTIATION OF EMBRYONIC STEM CELLS INTO OSTEOBLASTS IN VITRO

          Objective To review the progress, methods and obstacles in the differentiation of embryonic stem cells(ESCs) into osteoblasts in vitro. Methods The recent literature concerned with the differentiation of ESCs into the osteoblasts was extensively reviewed and briefly summarized. Results ESCs was a good tool for derivation of obsteoblasts.Conclusion The study on the induction of ESCsinto the osteogenic lineage provides a model for analyzing the molecular processes of osteoblasts development in vivo and establishes the foundation for the use of ESCs in skeletal tissue repair. 

          Release date:2016-09-01 09:22 Export PDF Favorites Scan
        • EXPERIMENTAL STUDY ON ADHESIVENESS OF OSTEOBLASTS AND VASCULAR ENDOTHELIAL CELLS FROM RAT BMSCs CO-CULTURED ON ALLOGENEIC FREEZE-DRIED PARTIALLY BONE IN VITRO.

          Objective To investigate the adhesiveness of osteoblasts and vascular endothel ial cells from rat BMSCs co-cultured on allogeneic freeze-dried partially bone in vitro. Methods The BMSCs were isolated from 4-week-old SD rats (weighing 100-110 g) and cultured in vitro. The third generation of BMSCs were induced into osteoblasts and vascular endothel ial cells. The osteoblasts and vascular endothel ial cells after being induced for 7 days in a ratio of 1 to 1 were directlyco-cultured (experimental group), while the second generation of uninduced BMSCs was used as a control (control group). The growth and prol iferation abil ity were analyzed by MTT examination and the growth curve was drawn at 1-8 days. The osteoblasts and vascular endothel ial cells after being induced for 14 days were implanted in the allogeneic freeze-dried partially bone coated by 20% Col I or not at different densities (0.25 × 106/mL、0.50 × 106/mL、1.00 × 106/mL、2.00 × 106/mL、4.00 × 106/mL), as modified group and unmodified group, the cell adherence rate was calculated after 24 hours. These two kinds of cells were implanted in the pre-disposal treated allogeneic freeze-dried partially bone and observed by scanning electron microscope. Results ALP staining of osteoblasts showed that there were blue grains in cytoplasm at 7 days. CD31 and CD34 immunocytochemical staining of vascular endothelial cell showed that there were positive signals in the cytoplasm at 14 days. The MTT test showed that the prol iferation level of the experimental group was lower than those of the control group. There were significant differences in absorbance value between two group from 3 days to 8 days (P lt; 0.05). The cell adherence rate increased with increasing seeding density when the seeding density was (0.25-1.00) × 106/mL. The cell adherence rate reached the peak when the seeding density was 1.00 × 106/mL. The cell adherence rate decreased when the seeding density was more than 2.00 × 106/mL. There were significant differences in cell adherence rate between modified group and unmodified group at different seeding densities (P lt; 0.05). The prol iferation of the osteoblasts and endothel ial cells presented better growth and histocompatibil ity under scanning electron microscope. Conclusion The growing behavior of two kinds of cells is good in the allogeneic freezedried partially bone coated by 20% Col I , which can be used in reconstrction of vascularized tissue engineered bone.

          Release date:2016-09-01 09:08 Export PDF Favorites Scan
        • ABSTRACTSCUTURE AND ISOLATION OF PERIOSTEAL OSTEOBLASTS AND AUTORADIOGRAPHICSTUDY OF ITS OSTEOGENESIS

          Osteoblasts were cultured and isolated from a piece of tibial pettiosteum of four New-Zealandrabbits. After subeultured,these cells Were incubatd in vitro with tritiated thvmidine for 36 hoursand then these labeled cells were implanted in the subeutaneous layer of the defects of the auriclarcartilage and the radial bone, After 2 weeks and 4 weeks respectively, these rabbits were killed andthe spoimens were obtained from the site where the cells had been transplanted. The transformation of these cells was observed by autoradiographic method. The results indicated that nearly all of the cultured cells were labeled. After 2 weeks, it was observed that many labeled osteoblasts were in different stages of differentiation, some were beried by extracellular matrix and resembled osteocyte, thers were differentiated into chondrocyte-like cell. In addition, some labeled osteoblasts were congregated in the form of multinucleated osteoclast. After 4 weeks , in the subcutaneous layer the labeled osteoblasts were changed to osteoid tissue and in the defect of the auricular crtilage these cells transformed into chondritic tissue; moreover, those labeled osteoblsts which had been implanted into the radial defect had differentiated into typical bone tissue. The results of this research indicated that the osteoblasts isolated from the periosteum if reimplanted to the same donor might be possible to repair the bone and cartilage defects.

          Release date:2016-09-01 11:18 Export PDF Favorites Scan
        • EXPERIMENTAL STUDY OF PERIOSTEAL OSTEOBLASTS COCULTURE WITH FREEZE-DRIED DEMINERALIZED BONE MATRIX

          OBJECTIVE To investigate the feasibility of freeze-dried demineralized bone matrix (FDBM) as scaffold material in bone tissue engineering. METHODS Osteoblasts which were isolated from cranial periosteum of New Zealand rabbits were cultured as the seeding cells, then the cells were cocultured with heterogenous FDBM in vitro. The cell-material complex was observed under phase microscope, light microscope and electronic scanning microscope in order to evaluate the interaction between cells and FDBM. RESULTS Eight hours after coculture, the osteoblasts adhered to FDBM scaffolds. Seven days later, the osteoblasts differentiated and proliferated in FDBM network. Extracellular matrix was secreted and calcium nodes were formed among osteoblasts. CONCLUSION FDBM is a good scaffold material for the bone tissue engineering.

          Release date: Export PDF Favorites Scan
        • CONDITIONED MEDIUM OF BONE MARROW MESENCHYMAL STEM CELLS ALLEVIATE INHIBITING EFFECT OF DEXAMETHASONE ON OSTEOGENETIC CAPABILITY OF OSTEOBLAST

          Objective To explore the paracrine effect of bone marrow mesenchymal stem cells (BMSCs) on dexamethasone-induced inhibition of osteoblast function in vitro. Methods The serum free conditioned medium of mouse BMSCs cultured for 24 hours was prepared for spare use. The 3rd passage of MC3T3-E1 cells were divided into 4 groups: the control group (group A), dexamethasone group (group B), dexamethasone+BMSCs conditioned medium (1:1) group (group C), and BMSCs conditioned medium group (group D). After 24 hours of culture, the alkaline phosphatase (ALP) content was determined; the protein expressions of RUNX2 and Osteocalcin were detected by Western blot; and the gene expressions of collagen type I-α 1 (COL1A1), RUNX2, ALP, and Osteocalcin were detected by real-time fluorescence quantitative PCR (RT-qPCR); alizarin red staining was used to observe calcium nodules formation at 21 days. Results After cultured for 24 hours, ALP content was significantly lower in groups B, C, and D than group A, and in group B than groups C and D (P < 0.05), but no significant difference was found between groups C and D (P > 0.05). The relative protein expression of RUNX2 of group B was significantly lower than that of groups A, C, and D (P < 0.05), but difference was not significant between groups A, C, and D (P > 0.05). The relative protein expression of Osteocalcin was significantly lower in group B than groups A, C, and D, in groups A and C than group D (P < 0.05), but difference had no significance between groups A and C (P > 0.05). The relative gene expressions of RUNX2, Osteocalcin, COL1A1, and ALP of groups B, C, and D were significantly lower than those of group A (P < 0.05); the relative gene expressions of RUNX2, Osteocalcin, and ALP were significantly higher in group D than groups B and C, in group C than group B (P < 0.05). The gene expression of COL1A1 was significantly higher in group D than group B (P < 0.05), but difference was not significant between groups B and C, and between groups C and D (P > 0.05). The cells of group A all died at 6 days after culture; at 21 days, the calcium no dule staining was positive by alizarin red in groups B, C and D, and the degree of the staining gradually increased from groups B to D. Conclusion BMSCs conditioned medium can alleviate the inhibitory effect of dexamethasone on osteoblasts function.

          Release date: Export PDF Favorites Scan
        • ROLE OF OSTEOBLASTS IN THE HEMATOPOIETIC MICROENVIRONMENT OF BONE MARROW AND REGULATORY PATHWAYS AND MECHANISMS

          Objective To review the research progress of osteoblasts in the hematopoietic microenvironment of bone marrow and regulatory pathways and mechanisms. Methods The advances in the osteoblasts as crucial components for hematopoietic microenvironment in bone marrow, regulation to osteoblasts and hematopoietic stem cells(HSCs), and correlative singal pathways and mechanisms were introduced based on the recent related literature. Results Evidence indicates that osteoblasts are crucial components of the hematopoietic microenvironments in adult bone marrow. The osteoblasts maintainthe quiescence of primitive HSCs by the signaling receptorsligands, secreted cell factors and celladhesion molecules and by regulating other cells in the niche. The quiescent primitive HSCs persist stem cell characteristic which has unlimited selfrenewal and multipotent differentiation potential. Conclusion The further understanding of the relationship between osteoblasts and hematopoietic microenvironment should lead to development of new strategies directed toward clinical therapeutics of HSCs transplantation.

          Release date:2016-09-01 09:22 Export PDF Favorites Scan
        3 pages Previous 1 2 3 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜