Purpose To identify the expression of alternatively spliced mRNA isoforms of the NMDA-R1 in the visual cortex of strabismic cats. Methods Two pai rs of normal and strabismic cats were used.The amblyopic cats had been made monocularly esotropic (by tenotomy) at the age of weeks,resulting in behavioral am blyopia.Animals were sacrificed about 6 months by intraperitoneal administration of Nembutal.Cryostat sections of fresh,frozen central visual cortex of the ats were cut to 20 micron thickness.A series of digoxygenin-labelled oligonucle otide probes basing on the human gene sequence were used for ISH.Control probes included sense oligonucleotides and short segment probes which were adjacent to ,but did not,span the splice junctions.A computer-assisted systematic morphometric ounting procedure was used to enumerate hybridising cells. Results The number of positive cells expressing NMDA-R1 mRNA in t he strabismic amblyopic cats was decreased,notably in layer IV of visual cortex (P<0.0001).The pattern of isoform expression varied between normal and strabismic amblyopic cats with decreased numbers of 1-a,1- b and 1-1 isoforms and apparently increased expression of 1-3 P <0.0001),whereas no significant difference was found for the 1-2 and 1-4 isoforms (P>0.05). Conclusion Transcriptional inhibition of NMDA-R1 mRNA and of specifie isoforms may underlie the change in receptor expression.Alternatively,preferentialloss of neurones bearing particular NMDA-R1 isoforms and compensation with a proportional increase in cells expressing other isoforms may occurr during the critical period of visual plasticity. (Chin J Ocul Fundus Dis,2000,16:71-138)
ObjectiveTo investigate the protective effects of different concentrations of chloroquine on RGC in n-methyl-d-aspartate (NMDA) injured mice and its possible mechanisms.MethodsFifty-four healthy male C57/BL6 mice were randomly divided into three groups, 18 in each group. The mice in low-dose chloroquine group were intraperitoneally injected with chloroquine solution at a dose of 10 mg/kg daily. Mice in high-dose chloroquine group were intraperitoneally injected with chloroquine solution at a dose of 100 mg/kg, and the mice in control group were intraperitoneally injected with the same volume of PBS. NMDA intravitreal injection was performed 2 days after intraperitoneal injection, 5 nmoles NMDA was injected into the left eye, and the same volume of PBS was injected into the right eye as a control. The RGC staining of retinal plaques were performed 7 days after NMDA injection, and the number of alive RGC was calculated. The visual acuity and electroretinogram were used to evaluate the electrophysiological functions of RGC at 9 and 10 days after modeling. Real-time quantitative PCR and retinal frozen sections and glial fibrillary acidic protein (GFAP) immunofluorescence staining were performed 11 days after NMDA injection to evaluate the glial activation of the retina. The density, visual acuity, and the amplitude of PhNR-wave of RGC between groups were compared by one-way analysis of variance.ResultsAt 7 days after NMDA injection, the density of RGC in retinal patch of low-dose chloroquine group was significantly higher than that of intraperitoneal injection of PBS control group (F=54.41, P<0.01). The density of RGC in retinal patch of high-dose chloroquine group was lower than that of control group (F=1.18, P>0.05). The visual acuity was higher than control group, and the difference was statistically significant (F=9.10, P<0.05). The amplitude of PhNR-wave was significantly higher in low-dose chloroquine group than that of the control group (F=17.60, P<0.01). The mRNA level of inflammatory factor and GFAP positive signal was also significantly lower than that of the control group (F=23.66, P<0.05). The amplitude of PhNR-wave, the expression of GFAP (F=110.20, P<0.01) and the mRNA level of inflammatory factors (F=167.60, 17.78; P<0.01) in the high-dose chloroquine group were higher than the other two groups, and the differences were statistically significant.ConclusionsIn NMDA injury retinal model, low-dose chloroquine significantly increased the survival and physiological function of RGC, and the mechanism may be related to the inhibition of glial activation and inflammatory response. High-dose of chloroquine would aggravate the apoptosis of RGC.