We cultured retinal g[ial cells(RGC)from immature rats and observed the migratory responses to fetal bovine serum(FBS).We found thai FItS stimulats the migration of RGC in a dose response manner. We also observed the inhibition of heparin on RGC cben,otaxis,and found that heparin(10U/ml)decreased significantly the RGC migration stimulated by serum(0%to 10%)(all Plt;0.0001).but 1U/ml of heparin bad no effect on RGC chemotaxis(P=0.5118).These results showed that FBS contains chemoattractants for RGC,and heparin can inhibit RGC chemotaxis stimulated by serum. (Chin J Ocul Fundus Dis,1994,10:170-173)
Objective To study a simple and practical method of isolation, culture and identification of hepatic oval cells from adult rat. Methods Wistar adult rats were fed by 2-acetaminofluorere (AAF) and were stimulated by partial hepatectomy to activate the proliferation of hepatic oval cells. After operation 12 days, the livers were resected for isolating oval cells. Hepatic tissue was digested by 0.10% collagenase Ⅳ and the obtained heterogeneous liver cells were then isolated and purified by density gradient centrifugation. The expressions of albumin and CK19 mRNA in hepatic oval cells were analyzed by immuno-fluorescence and RT-PCR. Results The survival rate of the newly isolated oval cells was more than 90%. The hepatic stem cells were shown by immuno-fluorescence of stem cell’s antigen c-kit. The expressions of mRNA CK19 and albumin of the oval cell were also detected by PCR. The proliferation activity of the newly isolated oval cells was significantly high and they could be induced to differentiate into both hepatic and bile ductal cells by some growth factors. Conclusion The successful development of the simple and feasible isolation and purification procedure as well as the identification method for hepatic oval cells may provide a fundamental for further studies about bionomics of the hepatic stem cell and the relation between stem cells and hepatic carcinoma.
Objective To explore the effect of basic fibroblast growth factor(bFGF)and epidermal growth factor(EGF)on the growth of muscle derived stem cells(MDSCs). Methods MDSCs were isolated from hindlimb muscle of 15 new born Kunming mice through serial preplates. 2% fetal bovine serum-containing DMEM was used to induce MDSCs to differentiate into skeletal muscle lineage. The expressions of stem cell marker Sca-1 and skeletal musclecell marker αSarcomeric actin were examined by immunocytochemistry. The effect of bFGF and EGF on the proliferation of MDSCs was determined by MTT colorimetric microassay. The solo effect of bFGF or EGF at different concentrations (6.25,12.50, 25.00, 50.00, and 100.00 ng/ml) was examined at 96 h and the combined effect (100.00 ng/ml) was examined at 24,48,72 and 96 h.Results MDSCs were successfully isolated from the hindlimb of neonatal mice. Over 90% of MDSCs showed Sca-1 positive immunoreactivity. MDSCs could give rise to α Sarcomeric actin positive myotubes in differentiation cultures. The proliferative effect of bFGF and EGF on MDSCs increased with the elevated concentration.bFGF began to show significant proliferative effect at 12.50 ng/ml (P<0.05). The effect increased significantly when the concentration reached 25.00 ng/ml from 12.50 ng/ml (P<0.01) and reached a saturation point. The effect at 50.00 ng/ml or 100.00 ng/ml showed no significant increase when compared with thatat 25.00 ng/ml. EGF had a similar effect to bFGF except that the saturation concentration was 50.00 ng/ml. EGF showed significant effect at 72 h and bFGF at 96 h (Plt;0.01). When they were applied together, significant effect was shownat 24 h (Plt;0.01) and much higher effect was observed at 48, 72 and 96 h (Plt;0.05). Conclusion Both bFGF and EGF can promote the proliferation of MDSCs. The combined application reacts faster and ber.
Objective To sum up the research advances of the seed cell and the culture system using in tissue engineering cartilage. Methods The recent original articles about the seed cell and the culture system in tissue engineering cartilage were extensively reviewed. Results At present, autologous or homologous cells is still major seed cell and the three dimensional culture system is also major system for tissue engineering cartilage. Conclusion The source of seed cell for tissue engineering cartilage. Conclusion The source of seed cell for tissue engineering cartilage should be further explored, and the culture system need to be improved and developed.
Following the peritendon was removed by means of microsurgical technique, the tenocyte was isolated from the human embryonic tendons by digesting it with trypsin and collagenase. These cells were all stored in frozen condition until they were cultured by F12 culture fluid added with 20% FBS to the 15th generation.These cells were able to grow adhering to the wall and stop growing with contact inhibition. The time of cellsgroup duplication was 4 days, which was similar to the peak time of its mitosis. The number of its chromosome group 2n=46 was 87.5-91.0%. The optimal conditions for tendon cell culture in vitro were investigated, and it was found that after they were reaminated and subcultured the frozen storage didn’t influence their growth, morphology, genetic characteristics. In our research we detected the content generation cells and found the cultured human embryonic tenocyte had same ability never changed with the cells subcultured. We also disscussed the future of tenocyte-a biomaterial in the field of artificial implant.
OBJECTIVE: To investigate the characteristic and phenotype of ectomesenchymal stem cells of human fetal facial processes and the procedure of spontaneous differentiation to smooth muscle cells. METHODS: The primary ectomesenchymal cells of E 50 human fetal facial processes were isolated by 2.5 g/L trypsin and cultured with DMEM/F 12 with 10(-6) U/L leukemia inhibitor factor(LIF). The morphology and growth rate were observed by inverted microscop. After being withdrawn LIF, the characteristic of cells were identified by immunohistochemistry and RT-PCR. Ultrastructure was observed by transmission electron microscope. RESULTS: The cultured cells displayed monolayer growth and were fibroblast-like with 2-4 processes. The cells were stainely positived for anti-human natural killer cell marker-1, Vimentin, S-100, neuron specific enolase, myoglobin and VIII factor, but negatively for glial fibrillary acidic protein, neural fiblament, alpha-SMA and cytokeratin in immunohistochemistry. Two days after being withdrawn the LIF, cells expressed alpha-SMA in protein and mRNA levels. The cells were rich in muscular filament-like structure and dense bodies under transmission electron microscope. CONCLUSION: Cultured cells are undifferentiated ectomesenchymal stem cells. The cells have the potential for differentiating spontaneously to smooth muscle cell.
OBJECTIVE This paper was to study the biological characteristics of the transformed human embryonic tendon cells, the relation between cell growth and culture conditions, and to compare these features with that of human embryonic tendon cells. METHODS The pts A58H plasmid had successfully used to transform a tendon cell line from human embryo in our past work. The human embryonic tendon cells and the transformed human embryonic tendon cells were cultured in vitro. In different culture conditions, the growth curve were drawn respectively. Population dependence and proliferation capability of the cells were investigated through plate cloning test and soft agar culture. The collagen secreted by cells was identified by immunohistochemical method. RESULTS In routine culture condition, the growth properties of the human embryonic tendon cell and transformed cells were almost identical. The growth properties of the transformed cells were not changed when the cells were frozen storage. There were changes of growth characteristics of the transformed cells when the culture temperature was changed. The transformed cells could subcultured continually and permanently. The proliferation capability of the transformed cells were ber than that of the human embryonic tendon cells. Moreover, the growth of the transformed cells was serum-dependent, and the phenomenon of contact inhibition was observed. The transformed cells were not able to grow on soft agar culture. They had the capacity of secreting collagen type I. CONCLUSION The transformed human embryonic tendon cells could be subcultured continually and permanently, and their growth could be controlled by changing their culture conditions and they had no malignant tendency in biological characteristics. They could be taken as an ideal experimental material for tendon engineering.
Objective To study the differenation of adult marrow mesenchymal stem cells(MSCs) into vascular endothelial cells in vitro and to explore inducing conditions. Methods MSCs were isolated from adult marrow mononuclear cells by attaching growth. MSCs were divided into 4 groups to induce: the cells seeded at a density of 5×103/cm2 in 2% and 15% FCS LDMEM respectively (group1 and group 2), at a density of 5×104/cm2 in 2% and 15% FCS LDMEM respectively (group 3 and group 4); vascular endothelial growth factor(VEGF) supplemented with Bovine pituitary extract was used to induce the cell differentiation. The differentiated cells were identified by measuring surfacemarks (CD34, VEGFR2, CD31 and vWF ) on the 14th day and 21st day and performed angiogenesis in vitroon the 21st day.The cell proliferation index(PI)of different inducing conditions were measured. Results After induced in VEGF supplemented with Bovine pituitary extract, the cells of group 3 expressed the surface marks CD34, VEGFR-2, CD31 and vWF on the 14th day, the positive rates were 8.5%, 12.0%, 40.0% and 30.0% respectively, and on the 21st day the positive ratesof CD34 and VEGFR2 increased to 15.5% and 20.0%, while the other groups did not express these marks; the induced cells of group 3 showed low proliferating state(PI was 10.4%) and formed capillary-like structure in semisolid medium. Conclusion Adult MSCs can differentiate into vascular endothelial cellsafter induced by VEGF and Bovine pituitary extract at high cell densities and low proliferatingconditions,suggesting that adult MSCs will be ideal seed cells forthe therapeutic neovascularization and tissue engineering.
ObjectiveTo explore the suitable method for isolation and maintenance of primary cultures of human gallbladder epithelial cells (GECs) for establishing the basis of research works in physiological function of gallbladder and its related diseases.MethodsGECs were isolated with collagenase type Ⅳ and blunt separation.The dishes were coated with fibronectin, laminin and polyDlysine respectively.Additional 10 ng/ml epidermal growth factor was added to DMEM medium containing 20% fetal calf serum.The cells were studied under light and electron microscope to determine their shape and distribution.ResultsEach gallbladder yielded approximately (1-5)×107columnar epithelial cells,greater than 95% of which were viable by trypan blue exclusion.The cells grew vigorously within one week which was flat and multangular in shape. CK19 expressed positive.Electron microscope showed typical gallbladder epithelia with microvilli,tight junctions and mucus droplets.ConclusionCombination of collagenase type Ⅳ,mechanical blunt separation and twostep attachment is of great benefit for separating and harvesting GEC.Fibronectin coated culture dish and DMEM medium containing 20% calf serum and 10 ng/ml hEGF is of great benefit for culturing gallbladder epithelial cells.
ObjectiveTo explore the methods of separation, culture, and identification of breast cancer stromal fibroblasts (BCSFs), which could build up a good basis for the further research of function. MethodsBreast cancer tissues were obtained during breast cancer operation, and were cut into pieces with size of 1 mm×1 mm×1 mm under aseptic conditions, then the pieces of the tissues were digested by collagenase Ⅰ and hyaluronidase. Finally the cells separated from the tissues incubated at 37 ℃ with 5% CO2 and 95% air humidified incubator. Morphological characteristics of the fibroblasts were observed under light microscope. The certain proteins were examined by immunohistochemistry (using CK, Vimentin, α-SMA, and TE-7 antibody) and flow cytometric analysis (CD34 and CD45). ResultsThe separated cells begin to attach to the wall of flask within 24 h and reached almost confluency in about 7 d to 10 d . According to identification, the successful rate of separation and culture of BCSFs was 90%(18/20), and the characteristics of cells showed that morphological characteristics of the fibroblasts was flat spindle, rich cytoplasm, and a flat ovoid cystic nuclear. The fibroblasts in breast cancer tissues showed negative staining for cytokeratin, positive staining for vimentin, alpha-smooth muscle actin, and TE-7, and negative for CD34 and CD45 by flow cytometric analysis. ConclusionsThe fibroblasts in breast cancer tissues could be easily obtained by tissues cuting combined enzyme digestion and rocking technology in vitro. The present study provide an experimental foundation for further studies on fibroblasts in breast cancer.