• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "Basic fibroblast growth factor" 52 results
        • EXPERIMENTAL STUDY ON REPAIR OF PERIPHERAL NERVE DEFECT BY BASIC FIBROBLAST GROWTH FACTOR COMBINED WITH AUTOGENOUS VEIN GRAFT CONDUIT

          OBJECTIVE To explore the effect of basic fibroblast growth factor (bFGF) combined with autogenous vein graft conduit on peripheral nerve regeneration. METHODS Fifty four New Zealand rabbits were divided into three groups. The main trunk of sciatic nerve of rabbit in one side was severed and bridged by autogenous vein. 0.2 ml bFGF solution (4,000 U/ml) was intravenously injected to the vein graft conduit as group A, the same amount of saline solution as group B, and no solution injection as group C. Microscopic examination, axon video analysis and nerve conduct velocity were performed at the 10th, 30th, and 100th day after operation. RESULTS The nerve fibers were grown into vein graft conduit in all groups at 30th after operation, they were more and regular in group A than that of group B and C, and the axon regeneration rate in group A was more than that of group B and C. CONCLUSION bFGF combined with autogenous vein graft conduit can markedly promote nerve regeneration.

          Release date:2016-09-01 10:25 Export PDF Favorites Scan
        • PROLIFERATIVE EFFECT OF BASIC FIBROBLAST GROWTH FACTOR AND EPIDERMAL GROWTH FACTOR ON MUSCLE DERIVED STEM CELLS

          Objective To explore the effect of basic fibroblast growth factor(bFGF)and epidermal growth factor(EGF)on the growth of muscle derived stem cells(MDSCs). Methods MDSCs were isolated from hindlimb muscle of 15 new born Kunming mice through serial preplates. 2% fetal bovine serum-containing DMEM was used to induce MDSCs to differentiate into skeletal muscle lineage. The expressions of stem cell marker Sca-1 and skeletal musclecell marker αSarcomeric actin were examined by immunocytochemistry. The effect of bFGF and EGF on the proliferation of MDSCs was determined by MTT colorimetric microassay. The solo effect of bFGF or EGF at different concentrations (6.25,12.50, 25.00, 50.00, and 100.00 ng/ml) was examined at 96 h and the combined effect (100.00 ng/ml) was examined at 24,48,72 and 96 h.Results MDSCs were successfully isolated from the hindlimb of neonatal mice. Over 90% of MDSCs showed Sca-1 positive immunoreactivity. MDSCs could give rise to α Sarcomeric actin positive myotubes in differentiation cultures. The proliferative effect of bFGF and EGF on MDSCs increased with the elevated concentration.bFGF began to show significant proliferative effect at 12.50 ng/ml (P<0.05). The effect increased significantly when the concentration reached 25.00 ng/ml from 12.50 ng/ml (P<0.01) and reached a saturation point. The effect at 50.00 ng/ml or 100.00 ng/ml showed no significant increase when compared with thatat 25.00 ng/ml. EGF had a similar effect to bFGF except that the saturation concentration was 50.00 ng/ml. EGF showed significant effect at 72 h and bFGF at 96 h (Plt;0.01). When they were applied together, significant effect was shownat 24 h (Plt;0.01) and much higher effect was observed at 48, 72 and 96 h (Plt;0.05). Conclusion Both bFGF and EGF can promote the proliferation of MDSCs. The combined application reacts faster and ber.

          Release date:2016-09-01 09:26 Export PDF Favorites Scan
        • EFFECT OF EXOGENOUS BASIC FIBROBLAST GROWTH FACTOR ON PROLIFERATION AND MIGRATION OFENDOTHELIAL CELLS OF PARTIAL THICKNESS SCALD IN RATS

          Objective To observe the proliferation and migration of endothelial cells after 30% total burn surface area (TBSA) of deep partial thickness scald, and the effect of basic fibroblast growth factor (bFGF) on angiogenesis during wound healing.Methods A total of 133 male Wistar ratswere divided randomly into normal control (n=7), injured control group (n=42), bFGF group (n=42) andanti-c-fos group (n=42). The apoptosis expression of fibroblasts was determinedwith in situ hybridization and the changes of proliferation cell nuclear antigen(PCNA), focal adhesion rinase(FAK), c-fos and extracellular signalregulated kinase(ERK) proteins expression were detected with immunohistochemistry staining technique after 3 hours, 6 hours, 1 day, 3 days, 7 days, 14 days and 21 days of scald.Results In injured control group and bFGF group, theproliferation rate of the vascular endothelial had evident changes 7 days and14 days after scald; the expression of FAK was increased 14 days after scald. ERK proteins expression was different between injury control group and bFGF group at initial stage after scald. Stimulation of ERKs by bFGF led to up-regulation of c-fos and b expression of FAK. Conclusion Exogenous bFGF extended the influence on wound healing process by ERK signaling pathway, affecting migration cascade of vascular endothelial cell. The oncogene proteins play an important role on accelerating angiogenesis duringwound healing.

          Release date: Export PDF Favorites Scan
        • EFFECT OF BASIC FIBROBLAST GROWTH FACTOR AND PARATHYROID HORMONE-RELATED PROTEIN ON EARLY AND LATE CHONDROGENIC DIFFERENTIATION OF RABBIT BONE MARROW MESENCHYMAL STEM CELLS INDUCED BY TRANSFORMING GROWTH FACTOR β1

          Objective To explore the impact of basic fibroblast growth factor (bFGF) and parathyroid hormone-related protein (PTHrP) on early and late chondrogenic differentiation of rabbit bone marrow mesenchymal stem cells (BMSCs) induced by transforming growth factor β1 (TGF-β1). Methods BMSCs were isolated from 3 healthy Japanese rabbits (2-month-old, weighing 1.6-2.1 kg, male or female), and were clutured to passage 3. The cells were put into pellet culture system and were divided into 5 groups according to different induce conditions: TGF-β1 group (group A), TGF-β1/bFGF group (group B), TGF-β1/21 days bFGF group (group C), TGF-β1/PTHrP group (group D), and TGF-β1/21 days PTHrP group (group E). At the beginning, TGF-β1 (10 ng/mL) was added to all groups, then bFGF and PTHrP (10 ng/mL) were added to groups B and D respectively; bFGF and PTHrP (10 ng/mL) were added to groups C and E at 21 days respectively. The gene expressions of collagen type I (Col I), Col II, Col X, matrix metalloproteinases (MMP)-13, and alkaline phosphatase (ALP) activity were detected once every week for 6 weeks. The 1, 9-dimethylmethylene blue (DMMB) staining was used to observe the extracellular matrix secretion at 6 weeks. Results The expression of Col I in groups C and E showed a significant downward trend after 3 weeks; the expression in group A was significantly higher than that in groups C and E at 4 and 5 weeks (P lt; 0.05), and than that in groups B and D at 3-6 weeks (P lt; 0.05); and significant differences were found between groups B and C at 3 and 4 weeks, and between groups D and E at 3 weeks (P lt; 0.05). After 3 weeks, the expressions of Col II and Col X in groups C and E gradually decreased, and were significantly lower than those in group A at 4-6 weeks (P lt; 0.05). Groups B and D showed no significant difference in the expressions of Col II and Col X at all time points, but there was significant difference when compared with group A (P lt; 0.05). MMP-13 had no obvious expression at all time points in group A; significant differences were found between group B and groups A, C at 3 weeks (P lt; 0.05); and the expression was significantly higher in group D than in groups A and E (P lt; 0.05). ALP activity gradually increased with time in group A; after 4 weeks, ALP activity in groups C and E obviously decreased, and was significantly lower than that in group A (P lt; 0.05); there were significant differences between groups B and C, and between groups D and E at 2 and 3 weeks (P lt; 0.05). DMMB staining showed more cartilage lacuna in group A than in the other groups at 6 weeks. Conclusion bFGF and PTHrP can inhibit early and late chondrogenic differentiation of BMSCs by changing synthesis and decomposition of the cartilage extracellular matrix. The inhibition is not only by suppressing Col X expression, but also possibly by suppressing other chondrogenic protein.

          Release date:2016-08-31 04:06 Export PDF Favorites Scan
        • Study on Expressions and Significances of Endostatin, bFGF and CD34 in Gallbladder Cancer

          ObjectiveTo study the effects of the expressions of endostatin, basic fibroblast growth factor (bFGF) and CD34 on oncogenesis and progression of gallbladder cancer, and to explore some valuable criterias for its biotherapy. Methods The expressions of endostatin, bFGF and CD34 were studied by means of immunohistochemistry (SP) in 61 cases of gallbladder cancer and 10 cases of normal cholecystic tissue, and microvessel density (MVD) was calculated by the expression of CD34. Their relationships with clinical pathological features were also investigated. Results The expression rates of endostatin in normal cholecystic tissue and in gallbladder cancer tissue were 40.00% (4/10) and 77.05% (47/61) respectively, which had statistical difference (P<0.05). The expression of endostatin in 61 cases of caner was relational to clinical stage and metastasis of lymph nodes (P<0.05), while no significant correlation was detected with sex and age of patient, location of tumor, size of tumor and histologic grade (P>0.05). The expression rates of bFGF in normal cholecystic tissue and in gallbladder cancer tissue were 20.00%(2/10) and 67.21% (41/61) respectively, which had statistical difference (P<0.05). The expression of bFGF in 61 cases of caner was relational to clinical stage and metastasis of lymph nodes (P<0.05), while no significant correlation was detected with sex and age of patient, location of tumor, size of tumor and histologic grade (P>0.05). MVD in gallbladder cancer tissue and in normal cholecystic tissue was (76.66±20.15) piece/HP and (29.53±5.03) piece/HP respectively, showing significant difference (P<0.01). In 61 cases of cancer, MVD in clinical stage Ⅲ~Ⅴ 〔(80.53±17.98) piece/HP〕 was much higher than that in stage Ⅰ+Ⅱ 〔(46.79±5.38) piece/HP〕, P<0.01; MVD was higher in those with lymph nodes metastasis 〔(94.60±7.28) piece/HP〕 than those without metastasis 〔(58.12±9.24) piece/HP〕, P<0.01; and MVD was (60.59±14.71) piece/HP in histologic grade G1, (83.08±15.30) piece/HP in G2, and (96.53±6.92) piece/HP in G3, the difference was significant among them (P<0.01). There was no significant correlation between MVD and sex and age of patient, location of tumor and size of tumor (P>0.05). There were statistically significant correlations between expressions of endostatin and MVD (P<0.01), expressions of bFGF and MVD (P<0.01). Conclusions The result suggests that endostatin, bFGF and CD34 play roles in oncogenesis and progression of gallbladder cancer. Detection of these proteins has positive effects on diagnosis, malignant degree determination and treatment of gallbladder cancer.

          Release date:2016-09-08 11:04 Export PDF Favorites Scan
        • YNERGISTIC EFFECT OF FIBRONECTION AND BASIC FIBROBLAST GROWTH FACTORON OSTEOBLAST ADHESION EFFICIENCY y, Nanjing Jiangsu, 210029, P. R. China.

          Objective To investigate effects of the basic fibroblast growth factor (bFGF) and fibronection (FN) on the osteoblast adhesion on the bio-derived bone. Methods The third generation of the osteoblast was treated with bFGF 0.1, 1, 10, and 100 ng/ml, respectively, and then was seeded in the bioderived bone, which had been modified with FN 0.1, 1, 10, and 100 μg/ml, or Polylysine, respectively. The cell adhesion was measured by the MTT assay. The cell density and the cell appearance were observed by the scanning electron microscope. The abovementioned procedures were repeated by an application of the GRGDS peptide. Results Both FN and bFGF could enhance the osteoblast adhesion efficiency on the bioderived bone (Plt;0.05). However, the osteoblast adhesion efficiency could be significantly strengthened bya combined use of FN and bFGF. FN and bFGF had a significant synergistic effectin statistics (Plt;0.01), but Polylysine and bFGF had no such synergistic effect (P>0.05). The combined use of FN and bFGF had a better effect on the cell density and the cell appearance than either of them when observed with the scanning electron microscope. Adhesion efficiency generated by the combined use of FN and bFGF was significantly blocked by the application of the GRGDS peptide. Conclusion The combined use of FN and bFGF has a significant synergistic effect on the osteoblast adhesion efficiency on the bioderived bone. This effect is probably mediated by the RGD-integrin α5β1 pathway.

          Release date:2016-09-01 09:22 Export PDF Favorites Scan
        • EFFECTS OF BASIC FIBROBLAST GROWTH FACTOR ON THE HEALING OF CUTANEOUS CHRONIC WOUNDS

          OBJECTIVE To observe the effects of basic fibroblast growth factor(bFGF) on the healing of cutaneous chronic wounds. METHODS Twenty-eight cases with thirty-three wounds from trauma, diabetes, pressure and radiation injuries were locally treated with bFGF in a dosage of 150 U/cm2 wounds. The healing time of wounds was used to evaluate the treatment results. RESULTS The healing time in all of chronic wounds were accelerated. All wounds from trauma, diabetes and pressure were healed within 4 weeks and another 2 wounds from radiation injuries were healed over 4 weeks. The healing rate within 4 weeks was 93.9%. CONCLUSION The results indicate that bFGF can be used as a promoter to accelerate the healing of chronic wounds in clinic.

          Release date:2016-09-01 11:05 Export PDF Favorites Scan
        • EXPERIMENTAL STUDY ON BASIC FIBROBLAST GROWTH FACTOR COMBINED SLOW-RELEASING DEGRADABLE MEMBRANE TO PREVENT TENDON ADHESION

          Objective To study the adhesion-preventing effect of basic fibroblast growth factor(bFGF) combined slow-releasing degradable membrane.Methods The bFGF combined slow-releasing degradable membrane was made from bFGF and the reagent which could promote fibrinogen synthesize. Sixty-six SD rats were divided into groups A,B,C randomly (22 rats each group). In group A, sutured achilles tendon were encapsulated with bFGF combined slow-releasing degradable membrane;in group B, sutured achilles tendon were encapsulated with degradable membrane without any drug; in group C, achilles tendon were only sutured. Ninety days later, light-microscope, electronmicroscopoe, figureanalysing, hydroxyproline content, extent of peritendon adhesion and biomechanic test were evaluated.Results ①The amount of fibroblast and fibrinogen inside the sutured tendon in group A was larger than that inits peripheral connective tissue and in groups B and C (P<0.05). Thecontent of hydroxyproline and the ultimate tensile strength in group A was higher than those in groups B and C(P<0.01).② The peripheral tissue in group A almostremains the formal loose connective tissue, but it became dense connective tissue in groups B and C and grew into the tendon. Moreover, the extent of adhesion in group A was lesser than that in groups B, C according to the mensuration of peritendon adhesion.Conclusion The bFGF combined slow-releasing degradable membrane can make the intrinsic healing of tendon faster than peripheral

          Release date:2016-09-01 09:33 Export PDF Favorites Scan
        • EXPERIMENTAL RESEARCH OF DIFFERENTIATION OF HUM AN AMNIOTIC MESENCHYM AL STEM CELLS INTO LIGAMENT CELLS IN VITRO

          ObjectiveTo discuss whether human amniotic mesenchymal stem cells (hAMSCs) possesses the characteristic of mesenchymal stem cells, and could differentiate into ligament cells in vitro after induction. MethodsThe hAMSCs were separated through enzyme digestion, and the phenotypic characteristics of hAMSCs were tested through flow cytometry. The cells at passage 3 were cultured with L-DMEM/F12 medium containing transforming growth factor β1 (TGF-β1)+basic fibroblast growth factor (bFGF) (group A), containing hyaluronic acid (HA) (group B), containing TGF-β1+bFGF+HA (group C), and simple L-DMEM/F12 medium (group D) as control group. The morphology changes of cells in each group were observed by inverted phase contrast microscope at 21 days after induction; the cellular activities and proliferation were examined by sulforhodamine (SRB) colorimetric method; and specific mRNA and protein expressions of ligament including collagen type I, collagen type III, and tenascin C (TNC) were measured by real-time fluorescence quantitative PCR and immunohistochemical staining. ResultsThe flow cytometry result indicated that hAMSCs expressed mesenchymal stem cell phenotype. After 21 days of induction, the cells in groups A, B, and C grew like spindle-shaped fibroblasts under inverted phase contrast microscope, and cells showed single shape, obvious directivity, and compact arrangement in group C. The SRB result indicated that the cells in each group reached the peak of growth curve at 6 days; the cellular activities of groups A, B, and C were significantly higher than that of group D at 6 days after induction. Also, the immunohistochemical staining results showed that no expressions of TNC were detected in 4 groups at 7 days; expressions of collagen type I in groups A, B, and C were significantly higher than that in group D at 7, 14, and 21 days (P<0.001); the expressions of collagen type III in groups A, B, and C were significantly higher than that in group D at 14 and 21 days (P<0.001). There was an increasing tendency with time in collagen type I of group B, in collagen type III and TNC of groups A and C, showing significant difference among different time points (P<0.001). The real-time fluorescence quantitative PCR results revealed that the mRNA expressions of collagen type I and TNC in group C were significantly higher than those in groups A and B (P<0.05), and the mRNA expression of collagen type III in group B were significantly higher than that in groups A and C at 21 days (P<0.05). The mRNA expressions of collagen type I and TNC in groups A and C and mRNA expression of collagen type III in group C had an increasing tendency with time, showing significant difference among different time points (P<0.001). ConclusionThe hAMSCs possesses the characteristics of mesenchymal stem cells and excellent proliferation capacity. After in vitro induction, the expressions of ligament specific genes can be up-regulated and the synthesis of ligament specific proteins can be also strengthened. As a result, it can be used as one of ligament tissue engineering seed cell sources.

          Release date: Export PDF Favorites Scan
        • PREPARATION OF BASIC FIBROBLAST GROWTH FACTOR CHITOSAN MICROSPHERE AND ITS PROPERTIES

          Objective To study the release properties of basic fibroblast growth factor (bFGF) chitosan microspheres prepared by cross-linking-emulsion method using chitosan as a carrier material so as to lay a foundation for further study. Methods Using 0.6% sodium tripolyphosphate solution as a crosslinking agent and 1.5% solution of chitosan as a carrier material, bFGF chitosan microspheres were prepared by cross-linking-emulsion method. Laser particle size analyzer and Zeta electric potential analyzer were used to measure the particle diameter distribution, scanning electronic microscope to observe the morphology, and ELISA to determine the drug loading, the encapsulation rate, and the drug release properties. Results The particle size of bFGF chitosan microspheres ranged 20.312-24.152 μm. The microspheres were round with a smooth surface and uniform distribution, and it had no apparent porosity. The drug loading and encapsulation rate of microspheres were (7.57 ± 0.34) mg/g and 95.14% ± 1.58%, respectively. The bFGF chitosan microspheres could continuously release bFGF for 24 days; the bFGF level increased gradually with time and reached (820.45 ± 21.34) ng/mL at 24 days; and the microspheres had a burst effect, and the burst rate was 18.08%, and the accumulative release rate of the microspheres reached 82.05% during 24 days. Conclusion It is easy-to-operate to prepare the bFGF chitosan microspheres with the cross-linking-emulsion method. The bFGF chitosan microspheres have smooth surface, uniform distribution, and no apparent porosity.

          Release date:2016-08-31 04:24 Export PDF Favorites Scan
        6 pages Previous 1 2 3 ... 6 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜