• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "3D 打印" 49 results
        • Preliminary exploration of the domestic balloon-expandable valve in the treatment of degenerated tricuspid bioprosthetic valve via transcatheter "valve-in-valve" technology

          ObjectiveTo discuss the operation skill and clinical effects of using domestic balloon-expandable Prizvalve? transcatheter "valve-in-valve" to treat the degenerated bioprosthesis in the tricuspid position.MethodsAll the admitted surgical tricuspid valve bioprosthetic valve replacement patients were evaluated by computerized tomography angiography (CTA), ultrasound, and 3D printing technology, and 2 patients with a degenerated bioprosthesis were selected for tricuspid valve "valve-in-valve" operation. Under general anesthesia, the retro-preset Prizvalve? system was implanted into degenerated tricuspid bioprosthesis via the femoral vein approach under the guidance of transesophageal echocardiographic and fluoroscopic guidance.ResultsTranscatheter tricuspid valve implantation was successfully performed in both high-risk patients, and tricuspid regurgitation disappeared immediately. The operation time was 1.25 h and 2.43 h, respectively. There was no serious complication in both patients, and they were discharged from the hospital 7 days after the operation.ConclusionThe clinical effect of the degenerated tricuspid bioprosthetic valve implantation with domestic balloon-expandable valve via femoral vein approach "valve-in-valve" is good. Multimodality imaging and 3D printing technology can safely and effectively guide the implementation of this innovative technique.

          Release date:2021-07-28 10:22 Export PDF Favorites Scan
        • 脊柱腫瘤切除術后 3D 打印假體重建的近期療效

          目的總結在脊柱腫瘤切除術后采用 3D 打印假體重建的近期療效。方法2019 年 6 月—2020 年6 月,對 5 例脊柱腫瘤患者行腫瘤徹底切除后,采用 3D 打印假體植入輔助內固定重建脊柱穩定性。男 4 例,女 1 例;年齡 27~71 歲,平均 50.4 歲。病程 3~24 個月,平均 9.5 個月。原發腫瘤 3 例,轉移瘤 2 例。腫瘤侵犯 C5 1 例、T6 2 例、T12 1 例、L2 1 例。術前 Frankel 分級均為 E 級,疼痛視覺模擬評分(VAS)為(5.0±2.0)分,Karnofsky 功能狀態評分為(64.0±15.2)分。術后給予對應放化療、激素等輔助治療。結果手術時間為 180~525 min,平均 348 min;術中出血量 200~2 800 mL,平均 1 380 mL。切口均Ⅰ期愈合。患者均獲隨訪,隨訪時間 5~14 個月,平均 10.6 個月。術后除 1 例出現右側 C5 神經根麻痹外,其余患者均無并發癥發生。末次隨訪時,VAS 評分為(0.8±0.8)分,Karnofsky 功能狀態評分為(86.0±15.2)分,與術前比較差異均有統計學意義(P<0.05);神經功能無明顯變化;影像學復查示患者均無局部復發,內固定物及假體位置良好,假體與骨界面融合。結論脊柱腫瘤切除術后采用 3D 打印假體重建脊柱穩定性安全可行,可獲得較好近期療效。

          Release date:2021-06-30 03:55 Export PDF Favorites Scan
        • Clinical application of accurate placement of lumbar pedicle screws using three-dimensional printing navigational templates under Quadrant system

          Objective To explore the feasibility and the effectiveness of the accurate placement of lumbar pedicle screws using three-dimensional (3D) printing navigational templates in Quadrant minimally invasive system. Methods The L1-5 spines of 12 adult cadavers were scanned using CT. The 3D models of the lumbar spines were established. The screw trajectory was designed to pass through the central axis of the pedicle by using Mimics software. The navigational template was designed and 3D-printed according to the bony surface where the soft tissues could be removed. The placed screws were scanned using CT to create the 3D model again after operation. The 3D models of the designed trajectory and the placed screws were registered to evaluate the placed screws coincidence rate. Between November 2014 and November 2015, 31 patients with lumbar instability accepted surgery assisted with 3D-printing navigation module under Quadrant minimally invasive system. There were 14 males and 17 females, aged from 42 to 60 years, with an average of 45.2 years. The disease duration was 6-13 months (mean, 8.8 months). Single segment was involved in 15 cases, two segments in 13 cases, and three segments in 3 cases. Preoperative visual analogue scale (VAS) was 7.59±1.04; Oswestry disability index (ODI) was 76.21±5.82; and the Japanese Orthopaedic Association (JOA) score was 9.21±1.64. Results A total of 120 screws were placed in 12 cadavers specimens. The coincidence rate of placed screw was 100%. A total of 162 screws were implanted in 31 patients. The operation time was 65-147 minutes (mean, 102.23 minutes); the intraoperative blood loss was 50-116 mL (mean, 78.20 mL); and the intraoperative radiation exposure time was 8-54 seconds (mean, 42 seconds). At 3-7 days after operation, CT showed that the coincidence rate of the placed screws was 98.15% (159/162). At 4 weeks after operation, VAS, ODI, and JOA score were 2.24±0.80, 29.17±2.50, and 23.43±1.14 respectively, showing significant differences when compared with preoperative ones (t=14.842,P=0.006;t=36.927,P=0.002;t=–36.031,P=0.001). Thirty-one patients were followed up 8-24 months (mean, 18.7 months). All incision healed by first intention, and no complication occurred. During the follow-up, X-ray film and CT showed that pedicle screw was accurately placed without loosening or breakage, and with good fusion of intervertebral bone graft. Conclusion 3D-printing navigational templates in Quadrant minimally invasive system can help lumbar surgery gain minimal invasion, less radiation, and accurate placement.

          Release date:2017-03-13 01:37 Export PDF Favorites Scan
        • Application of three-dimensional printing technology in treatment of internal or external ankle distal avulsed fracture

          ObjectiveTo explore the effectiveness and advantage of three-dimensional (3D) printing technology in treatment of internal or external ankle distal avulsed fracture.MethodsBetween January 2015 and January 2017, 20 patients with distal avulsed fracture of internal or external ankle were treated with the 3D guidance of shape-blocking steel plate fixation (group A), and 18 patients were treated with traditional plaster external fixation (group B). There was no significant difference in gender, age, injury cause, disease duration, fracture side, and fracture type between 2 groups (P>0.05). Recording the fracture healing rate, fracture healing time, the time of starting to ankle functional exercise, residual ankle pain, and evaluating ankle function recovery of both groups by the American Orthopaedic Foot and Ankle Society (AOFAS) score.ResultsAll patients were followed up 8-24 months, with an average of 15.5 months. In group A: all incisions healed by first intention, the time of starting to ankle functional exercise was (14±3) days, fracture healing rate was 100%, and the fracture healing time was (10.15±2.00) weeks. At 6 months, the AOFAS score was 90.35±4.65. Among them, 13 patients were excellent and 7 patients were good. All patients had no post-operative incision infection, residual ankle pain, or dysfunction during the follow-up. In group B: the time of starting to ankle functional exercise was (40±10) days, the fracture healing rate was 94.44%, and the fracture healing time was (13.83±7.49) weeks. At 6 months, the AOFAS score was 79.28±34.28. Among them, 15 patients were good, 2 patients were medium, and 1 patient was poor. During the follow-up, 3 patients (16.67%) had pain of ankle joint with different degrees. There were significant differences in the postoperative fracture healing rate, fracture healing time, the time of starting to ankle functional exercise, and postoperative AOFAS score between 2 groups (P<0.05).ConclusionApplication of 3D printing technology in treatment of internal or external ankle distal avulsed fracture is simple, safe, reliable, and effective. In particular, it is an ideal treatment for avulsed fracture.

          Release date:2018-02-07 03:21 Export PDF Favorites Scan
        • Clinical Efficacy of 3D-printing Assisting Minimally Invasive Fixation in the Treatment of Calcaneal Fractures

          ObjectiveTo analyze the clinical outcomes of 3D-printing assisting minimally invasive fixation of calcaneal fractures. MethodsThe study included 12 patients who were diagnosed with calcaneal fractures between October 2014 and May 2015. Using a real-size 3D-printed calcaneus model, the calcaneal locking plate could be preshaped before the operation and used with a minimally invasive approach to achieve rigid plate fixation just as with the lateral approach. Complications and surgery time were recorded and functional results were evaluated using the American Orthopaedic Foot Society ankle-metapedes score (AOFAS). The reduction of fracture was evaluated using the Bohler angle and Gissane angle. ResultsThere was no relevant postoperative complications. All fractures got bone union. The mean postoperative Bohler angle was (29.4±6.1) ° and the mean postoperative Gissane angle was (121.4±12.6) °. The difference in Bohler angle and calcaneal Gissane angle before and after the surgery was significant (P < 0.01) . The mean postoperative AOFAS score was 75.2±5.4, and the fine/excellent rate was 83.3%. ConclusionWe believe this novel technique can be useful for the operative treatment of displaced intra-articular calcaneal fractures.

          Release date: Export PDF Favorites Scan
        • Treatment of severe distal humeral bone defects with three-dimensional printing technology

          ObjectiveTo explore the application of three-dimensional (3D) printing technology in precise and individualized surgical treatment of severe distal humeral bone defect.MethodsFive patients with severe distal humeral bone defects were treated with customized 3D printing prostheses between December 2010 and December 2015. There were 4 males and 1 female, with an age of 23-57 years (mean, 35 years); and the length of the bone defect was 5-12 cm (mean, 8 cm). The cause of injury was mechanical injury in 2 cases and strangulation in 3 cases. All of them were the open fracture of Gustilo type Ⅲ. There were 2 cases of radial fracture, 1 case of cubital nerve injury, and 3 cases of radial nerve injury. The time from injury to one-stage operation was 6-18 hours (mean, 10 hours). The operation time, intraoperative blood loss, and intraoperative fluoroscopy were recorded. During follow-up, the anteroposterior and lateral X-ray films of the elbow joints were performed to identify whether there was prosthesis loosening; Mayo Elbow Performance Score (MEPS) and upper extremity Enneking score were used to evaluate limb function.ResultsThe operation time was 140-190 minutes (mean, 165 minutes). The intraoperative blood loss was 310-490 mL (mean, 415 mL). The intraoperative fluoroscopy was 1-3 times (mean, 1.6 times). Five patients were followed up 14-38 months (mean, 21 months). The wound exudate occurred in 1 case and cured after anti-inflammatory local dressing change; the subcutaneous hematoma occurred in 1 case, and improved after color Doppler ultrasound guided puncture and drainage. The MEPS scores and the Enneking scores were all significantly improved when compared with preoperative ones (P<0.05). Except MEPS score between 6 and 12 months after operation had no significant difference (P>0.05), there were significant differences in MEPS scores and Enneking scores between the other time points (P<0.05). During the follow-up, no prosthetic loosening or joint dislocation occurred.Conclusion3D printing technology can achieve personalized treatment of severe distal humeral bone defects, obtain relatively good elbow joint function, and has less postoperative complications and satisfactory effectiveness.

          Release date:2018-12-04 03:41 Export PDF Favorites Scan
        • Clinical application of three-dimensional printed metal prosthesis in joint surgery

          Objective To summarize the application progress of three-dimensional (3D) printed metal prosthesis in joint surgery. Methods The related literature was extensively reviewed. The effectiveness of 3D printed metal prosthesis in treatment of joint surgery diseases were discussed and summarized, including the all key issues in prosthesis transplantation such as prosthesis stability, postoperative complications, bone ingrowth, etc. Results 3D printed metal prosthesis has good matching degree, can accurately reconstruct and restore joint function, reduce operation time, and achieve high patient satisfaction in short- and medium-term follow-up. Its application in joint surgery has made good progress. Conclusion The personalized microporous structure prostheses of different shapes produced by 3D printing can solve the problem of poor personalized matching of joints for special patients existing in traditional prostheses. Therefore, 3D printing technology is full of hope and will bring great potential to the reform of orthopedic practice in the future.

          Release date:2019-06-04 02:16 Export PDF Favorites Scan
        • Effectiveness of three-dimensional printing artificial vertebral body and interbody fusion Cage in anterior cervical surgery

          ObjectiveTo evaluate the effectiveness of three-dimensional (3D) printing artificial vertebral body and interbody fusion Cage in anterior cervical disectomy and fusion (ACCF) combined with anterior cervical corpectomy and fusion (ACDF).MethodsThe clinical data of 29 patients with multilevel cervical spondylotic myelopathy who underwent ACCF combined with ACDF between May 2018 and December 2019 were retrospectively analyzed. Among them, 13 patients were treated with 3D printing artificial vertebral body and 3D printing Cage as 3D printing group and 16 patients with ordinary titanium mesh Cage (TMC) and Cage as TMC group. There was no significant difference in gender, age, surgical segment, Nurick grade, disease duration, and preoperative Japanese Orthopaedic Association (JOA) score, visual analogue scale (VAS) score, and Cobb angle of fusion segment between the two groups (P>0.05). The operation time, intraoperative blood loss, hospitalization stay, complications, and implant fusion at last follow-up were recorded and compared between the two groups; JOA score was used to evaluate neurological function before operation, immediately after operation, at 6 months after operation, and at last follow-up; VAS score was used to evaluate upper limb and neck pain. Cobb angle of fusion segment was measured and the difference between the last follow-up and the immediate after operation was calculated. The height of the anterior border (HAB) and the height of the posterior border (HPB) were measured immediately after operation, at 6 months after operation, and at last follow-up, and the subsidence of implant was calculated.ResultsThe operation time of 3D printing group was significantly less than that of TMC group (t=3.336, P=0.002); there was no significant difference in hospitalization stay and intraoperative blood loss between the two groups (P>0.05). All patients were followed up 12-19 months (mean, 16 months). There was no obvious complication in both groups. There were significant differences in JOA score, VAS score, and Cobb angle at each time point between the two groups (P<0.05). There was an interaction between time and group in the JOA score (F=3.705, P=0.025). With time, the increase in JOA score was different between the 3D printing group and the TMC group, and the increase in the 3D printing group was greater. There was no interaction between time and group in the VAS score (F=3.038, P=0.065), and there was no significant difference in the score at each time point between the two groups (F=0.173, P=0.681). The time of the Cobb angle interacted with the group (F=15.581, P=0.000). With time, the Cobb angle of the 3D printing group and the TMC group changed differently. Among them, the 3D printing group increased more and the TMC group decreased more. At last follow-up, there was no significant difference in the improvement rate of JOA score between the two groups (t=0.681, P=0.502), but the Cobb angle difference of the 3D printing group was significantly smaller than that of the TMC group (t=5.754, P=0.000). At last follow-up, the implant fusion rate of the 3D printing group and TMC group were 92.3% (12/13) and 87.5% (14/16), respectively, and the difference was not significant (P=1.000). The incidence of implant settlement in the 3D printing group and TMC group at 6 months after operation was 15.4% (2/13) and 18.8% (3/16), respectively, and at last follow-up were 30.8% (4/13) and 56.3% (9/16), respectively, the differences were not significant (P=1.000; P=0.264). The difference of HAB and the difference of HPB in the 3D printing group at 6 months after operation and last follow-up were significantly lower than those in the TMC group (P<0.05).ConclusionFor patients with multilevel cervical spondylotic myelopathy undergoing ACCF combined with ACDF, compared with TMC and Cage, 3D printing artificial vertebrae body and 3D printing Cage have the advantages of shorter operation time, better reduction of height loss of fusion vertebral body, and maintenance of cervical physiological curvature, the early effectiveness is better.

          Release date:2021-09-28 03:00 Export PDF Favorites Scan
        • Clinical application of three-dimensional technique in segmentectomy

          More and more relevant research results show that anatomical segmentectomy has the same effect as traditional lobectomy in the surgical treatment of early-stage non-small cell lung cancer (diameter<2.0 cm). Segmentectomy is more difficult than lobotomy. Nowadays, with the promotion of personalization medicine and precision medicine, three-dimensional technique has been widely applied in the medical field. It has advantages such as preoperative simulation, intraoperative positioning, intraoperative navigation, clinical teaching and so on. It plays a key role in the discovery of local anatomical variation of pulmonary segment. This paper reviewed the clinical application of three-dimensional technique and briefly described the clinical application value of this technique in segmentectomy.

          Release date:2021-06-07 02:03 Export PDF Favorites Scan
        • Clinical study of three-dimensional printed navigation template assisted Ludloff osteotomy in treatment of moderate and severe hallux valgus

          ObjectiveTo explore the effectiveness and advantage of three-dimensional (3D) printed navigation templates assisted Ludloff osteotomy in treatment of moderate and severe hallux valgus.MethodsBetween April 2013 and February 2015, 28 patients (28 feet) with moderate and severe hallux valgus who underwent Ludloff osteotomy were randomly divided into 2 groups (n=14). In group A, the patients were treated with Ludloff osteotomy assissted with a 3D printed navigation template. In group B, the patients were treated with traditional Ludloff osteotomy. There was no significant difference in gender, age, affected side, and clinical classification between 2 groups (P>0.05). The operation time and intraoperative blood loss were recorded. The ankle function of the foot at preoperation, immediate after operation, and last follow-up were assessed by the American Orthopedic Foot and Ankle Society (AOFAS) score. Besides, the X-ray film were taken to assess the hallux valgus angle (HVA), intermetatarsal angle (IMA), and the first metatarsal length shortening.ResultsAll patients were followed up 18-40 months (mean, 26.4 months). The operation time and intraoperative blood loss in group A were significantly less than those in group B (P<0.05). The HVA, IMA, and AOFAS scores in groups A and B at immediate after operaton and last follow-up were sinificantly improved when compared with preoperative values (P<0.05); but no significant difference was found between at immediate after operation and at last follow-up (P>0.05). No significant difference was found in HVA and IMA between group A and group B at difference time points (P>0.05). There were significant differences in AOFAS score and the first metatarsal length shortening at immediate after operation and at last follow-up between 2 groups (P<0.05). Except 1 case of metastatic metatarsalgia in group B, there was no other operative complications in both groups.Conclusion3D printed navigation template assisted Ludloff osteotomy can provide accurate preoperative planning and intraoperative osteotomy. It is an ideal method for moderate and severe hallux valgus.

          Release date:2018-07-12 06:19 Export PDF Favorites Scan
        5 pages Previous 1 2 3 4 5 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜