本研究旨在客觀比較頸部肌肉疲勞評價算法的差異性,找出更加有效的頸部肌肉疲勞評價算法,為伏案姿勢下頸部肌肉疲勞提供人因工程定量評價方法。本文利用無線生理儀采集了 15 名受試者使用記憶枕伏案 12 min 的頸部胸鎖乳突肌的表面肌電信號,使用平均功率頻率、譜矩比、離散小波變換、模糊近似熵以及復雜度 5 個算法計算出相應的肌肉疲勞指標;并使用最小二乘法對肌肉疲勞指標進行線性回歸得出確定系數 R2 與斜率 k;確定系數 R2 可評價各種算法的抗干擾性;對斜率 k 進行柯爾莫哥洛夫—斯米洛夫檢驗得到最大垂直距離 Lmax,Lmax 可評價各種算法對疲勞程度的區分能力。統計結果表明,在抗干擾方面,模糊近似熵在不同高度的記憶枕下都具有最大的 R2,且模糊近似熵與平均功率頻率、離散小波變換的差異具有統計學意義(P < 0.05);在區分疲勞程度方面,模糊近似熵仍具有最大的 Lmax,最大值達 0.496 7。本文研究結果表明,模糊近似熵無論是在抗干擾性還是疲勞程度的區分能力上都優于其他算法,因此在進行頸部肌肉疲勞評價時,我們建議可將模糊近似熵作為一個較好的評價指標。