• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Author
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Author "杜志坡" 3 results
        • Practice of Evidence-based Treatment Strategy for Cervical Spinal Cord Injury

          ObjectiveTo explore the practice of the evidence-based treatment strategy for cervical spinal cord injury. MethodsOne patient with cervical spinal cord injury was admitted to our hospital on January 3, 2013. We obtained medical evidences by searching databases and regulated the best treatment after evaluating the patient's comprehensive conditions. And then, the whole treatment strategy was fully implemented. Finally, the consequent results were evaluated. ResultsThe evidence-based medicine showed that the therapeutic targets were to save the residual function, prevent complications, and promote the recovery of neural function. Based on the real-time conditions of patient, we developed and practiced the evidence-based comprehensive rehabilitation programs, including absolute rest in bed, high-dose steroids, neurotrophic drugs, Chinese medicine rehabilitation and prevention of complications. After a follow-up of half a year, the patient obtained a good curative effect. The patient was saved from paralyzing. Moreover, the patient restored the capacity of standing, walking and a certain level of self-care ability. ConclusionFor the cervical spinal cord injury, treatment decision based on evidence-based medicine is more scientific, and it can ensure maximum benefit for the patients. Therefore, it is worthy of popularizing.

          Release date: Export PDF Favorites Scan
        • Advantages and prospects of cell derived decellularized extracellular matrix as tissue engineering scaffolds

          ObjectiveTo review the application of cell derived decellularized extracellular matrix (CDM) in tissue engineering. Methods The literature related to the application of CDM in tissue engineering was extensively reviewed and analyzed. Results CDM is a mixture of cells and their secretory products obtained by culturing cells in vitro for a period of time, and then the mixture is treated by decellularization. Compared with tissue derived decellularized extracellular matrix (TDM), CDM can screen and utilize pathogen-free autologous cells, effectively avoiding the possible shortcomings of TDM, such as immune response and limited sources. In addition, by selecting the cell source, controlling the culture conditions, and selecting the template scaffold, the composition, structure, and mechanical properties of the scaffold can be controlled to obtain the desired scaffold. CDM retains the components and microstructure of extracellular matrix and has excellent biological functions, so it has become the focus of tissue engineering scaffolds. ConclusionCDM is superior in the field of tissue engineering because of its outstanding adjustability, safety, and high bioactivity. With the continuous progress of technology, CDM stents suitable for clinical use are expected to continue to emerge.

          Release date:2024-12-13 10:50 Export PDF Favorites Scan
        • Applications and prospects of graphene and its derivatives in bone repair

          ObjectiveTo summarize the latest research progress of graphene and its derivatives (GDs) in bone repair. MethodsThe relevant research literature at home and abroad in recent years was extensively accessed. The properties of GDs in bone repair materials, including mechanical properties, electrical conductivity, and antibacterial properties, were systematically summarized, and the unique advantages of GDs in material preparation, functionalization, and application, as well as the contributions and challenges to bone tissue engineering, were discussed. ResultsThe application of GDs in bone repair materials has broad prospects, and the functionalization and modification technology effectively improve the osteogenic activity and material properties of GDs. GDs can induce osteogenic differentiation of stem cells through specific signaling pathways and promote osteogenic activity through immunomodulatory mechanisms. In addition, the parameters of GDs have significant effects on the cytotoxicity and degradation behavior.ConclusionGDs has great potential in the field of bone repair because of its excellent physical and chemical properties and biological properties. However, the cytotoxicity, biodegradability, and functionalization strategies of GDs still need to be further studied in order to achieve a wider application in the field of bone tissue engineering.

          Release date: Export PDF Favorites Scan
        1 pages Previous 1 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜