1. |
Oremus M, Dayes I, Walker K, et al. Systematic review: conservative treatments for secondary lymphedema. BMC Cancer, 2012, 12: 6.
|
2. |
Lin CH, Ali R, Chen SC, et al. Vascularized groin lymph node transfer using the wrist as a recipient site for management of postmastectomy upper extremity lymphedema. Plast Reconstr Surg, 2009, 123(4): 1265-1275.
|
3. |
Becker C, Assouad J, Riquet M, et al. Postmastectomy lymphedema: long-term results following microsurgical lymph node transplantation. Ann Surg, 2006, 243(3): 313-315.
|
4. |
Saaristo AM, Niemi TS, Viitanen TP, et al. Microvascular breast reconstruction and lymph node transfer for postmastectomy lymphedema patents. Ann Surg, 2012, 255(3): 468-473.
|
5. |
Karkkainen MJ, Haiko P, Sainio K, et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol, 2004, 5(1): 74-80.
|
6. |
Küchler AM, Gjini E, Peterson-Maduro J, et al. Development of the zebrafish lymphatic system requires VEGF-C signaling. Curr Biol, 2006, 16(12): 1244-1248.
|
7. |
Yaniv K, Isogai S, Castranova D, et al. Live imaging of lymphatic development in the zebrafish. Nat Med, 2006, 12(6): 711-716.
|
8. |
Shin WS, Rockson SG. Animal models for the molecular and mechanistic study of lymphatic biology and disease. Ann N Y Acad Sci, 2008, 1131: 50-74.
|
9. |
Kanter MA, Slavin SA, Kaplan W. An experimental model for chronic lymphedema. Plast Reconstr Surg, 1990, 85(4): 573-580.
|
10. |
Shin WS, Szuba A, Rockson SG. Animal models for the study of lymphatic insufficiency. Lymphat Res Biol, 2003, 1(2): 159-169.
|
11. |
Tammela T, Saaristo A, Holopainen T, et al. Therapeutic differentiation and maturation of lymphatic vessels after lymph node dissection and transplantation. Nat Med, 2007, 13(12): 1458-1466.
|
12. |
Alitalo K, Tammela T, Petrocva TV. Lymphangiogenesis in development and human disease. Nature, 2005, 438(7070): 946-953.
|
13. |
Karkkainen MJ, Haiko P, Sainio K, et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol, 2004, 5(1): 74-80.
|
14. |
Foster DN, Min B, Foster LK, et al. Positive and negative cis-acting regulatory elements mediate expression of the mouse vascular smooth muscle alpha-actin gene. J Biol Chem, 1992, 267 (17): 11995-12003.
|
15. |
Mumprecht V, Roudnicky F, Detmar M. Inflammation-induced lymph node lymphangiogenesis is reversible. Am J Pathol, 2012, 180(3): 874-879.
|
16. |
Alam A, Herault JP, Barron P, et al. Heterodimerization with vascular endothelial growth factor receptor-2 (VEGFR-2) is necessary for VEGFR-3 activity. Biochem Biophys Res Commun, 2004, 324(2): 909-915.
|
17. |
Tammela T, Alitalo K. Lymphangiogenesis: Molecular mechanisms and future promise. Cell, 2010, 140(4): 460-476.
|
18. |
Song SH, Kim KL, Lee KA, et al. Tie1 regulates the Tie2 agonistic role of angiopoietin-2 in human lymphatic endothelial cells. Biochem Biophys Res Commun, 2012, 419(2): 281-286.
|
19. |
Nguyen VP, Chen SH, Trinh J, et al. Differential response of lymphatic, venous and arterial endothelial cells to angiopoietin-1 and angiopoietin-2. BMC Cell Biol, 2007, 8: 10.
|
20. |
Shioda H. Immunohistochemical demonstration of Angiopoietin-2 in lymphatic vascular development. Histochem Cell Biol, 2009, 131(2): 231-238.
|
21. |
Wu X, Liu NF. FOXC2 transcription factor: a novel regulator of lymphangiogenesis. Lymphology, 2011, 4(1): 35-41.
|
22. |
Hayashi H, Kume T. Foxc2 transcription factor as a regulator of angiogenesis via induction of integrin beta3 expression. Cell Adh Migr, 2009, 3(1): 24-26.
|
23. |
Sabine A, Agalarov Y, Maby-El Hajjami H, et al. Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation. Dev Cell, 2012, 22(2): 430-445.
|