1. |
劉振東, 范清宇. 應力遮擋效應——尋找丟失的鑰匙. 中華創傷骨科雜志, 2002, 4(1): 62-64.
|
2. |
Li Z, Gu X, Lou S, et al. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials, 2008, 29(10): 1329-1344.
|
3. |
Zhang S, Zhang X, Zhao C, et al. Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomater, 2010, 6(2): 626-640.
|
4. |
Song GL. Control of biodegradation of biocompatible magnesium alloys. Corrosion Science, 2007, 49: 1696-1701.
|
5. |
Staiger MP, Pietak AM, Huadmai J, et al. Magnesium and its alloy as orthopaedic biomaterials: a review. Biomater, 2006, 27(9): 1728-1734.
|
6. |
Wong HM, Yeung KW, Lam KO, et al. A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials, 2010, 31(8): 2084-2096.
|
7. |
Xin Y, Jiang J, Huo K, et al. Corrosion resistance and cytocompatibility of biodegradable surgical magnesium alloy coated with hydrogenated amorphous silicon. J Biomed Mater Res A, 2009, 89(3): 717-726.
|
8. |
Gray JE, Luan B. Protective coatings on magnesium and its alloys—a critical review. J Alloys Compounds, 2002, 336(1-2): 88-113.
|
9. |
Cai J, Cao F, Chang L, et al. The preparation and corrosion behaviors of MAO coating on AZ91D with rare earth conversion precursor film. Applied Surface Science, 2011, 257 (8): 3804-3811.
|
10. |
Guo HF, An MZ. Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate-fluoride solutions and evaluation of corrosion resistance. Applied Surface Science, 2005, 246(1-3): 229-238.
|
11. |
Guo HF, An MZ, Huo HB, et al. Microstructure characteristic of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation in alkaline silicate solutions. Applied Surface Science, 2006, 252(22): 7911-7916.
|
12. |
Liang J, Hu L, Hao JC. Improvement of corrosion properties of microarc oxidation coating on magnesium alloy by optimizing current density parameters. Applied Surface Science, 2007, 253(16): 6939-6945.
|
13. |
Jugdaohsingh R. Silicon and bone health. J Nutr Health Aging, 2007, 11(2): 99-110.
|
14. |
Ni S, Chou L, Chang J. Preparation and characterization of forsterite (Mg2SiO4) bioceramics. Ceram Inter, 2007, 33: 83-88.
|
15. |
Xie Y, Zhai W, Chen L, et al. Preparation and in vitro evaluation of plasma-sprayed Mg2SiO4 coating on titanium alloy. Acta Biomater, 2009, 5(6): 2331-2337.
|
16. |
Lin X, Tan L, Zhang Q, et al. The in vitro degradation process and biocompatibility of a ZK60 magnesium alloy with forsterite-containing micro-arc oxidation coating. Acta Biomaterialia, 2012. [Epub ahead of print].
|
17. |
ISO 10993-12. Biological evaluation of medical devices—Part 12: Sample preparation and reference materials. Geneva: ISO copyright office, 2007: 1-17.
|
18. |
Chiu KY, Wong MH, Cheng FT, et al. Characterization and corrosion studies of fiuoride conversion coating on degradable Mg implants. Surf Coat Tech, 2007, 202(3): 590-598.
|
19. |
鄒靜恂, 白進發, 葉玲. 高分子材料在組織工程中的應用. 首都醫科大學學報, 2002, 23(4): 364-366.
|
20. |
Sun J, Li J, Liu X, et al. Proliferation and gene expression of osteoblasts cultured in DMEM containing the ionic products of dicalcium silicate coating. Biomed Pharmacother, 2009, 63(9): 650-657.
|
21. |
左林, 柏樹令, 潘鋒, 等. 成骨細胞與鎂合金表面硅酸鹽-磷酸鹽復合涂層的體外相容性. 解剖學報, 2011, 42(1): 65-69.
|
22. |
Zhu X, Chen J, Scheideler L, et al. Effects of topography and composition of titanium surface oxides on osteoblast responses. Biomaterials, 2004, 25(18): 4087-4103.
|
23. |
Paul W, Sharma CP. Nanoceramic matrices: biomedical applications. Am J Biochem Biotechnol, 2006, 2(2): 41-48.
|
24. |
Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol, 2005, 23(1): 47-55.
|
25. |
Paital SR, Dahotre NB. Laser surface treatment for porous and textured Ca-P bio-ceramic coating on Ti-6Al-4V. Biomed Mater, 2007, 2(4): 274-281.
|
26. |
Assender H, Bliznyuk V, Porfyrakis K. How surface topography relates to materials’ properties. Science, 2002, 297(5583): 973-976.
|
27. |
Webster TJ, Ejiofor JU. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials, 2004, 25(19): 4731-4739.
|
28. |
Johnson I, Perchy D, Liu H. In vitro evaluation of the surface effects on magnesium-yttrium alloy degradation and mesenchymal stem cell adhesion. J Biomed Mater Res Part A, 2011, 176(20): 1778-1784.
|
29. |
Gu XN, Li N, Zheng YF, et al. In vitro degradation performance and biological response of a Mg-Zn-Zr alloy. Materials Science and Engineering: B, 2011, 176(20): 1178-1784.
|
30. |
Revell PA, Damien E, Zhang XS, et al. The effect of magnesium ions on bone bonding to hydroxyapatite coating on titanium alloy implants. Key Engineering Materials, 2004, 254-256: 447-450.
|
31. |
Valerio P, Pereira MM, Goes AM, et al. The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production. Biomaterials, 2004, 25(15): 2941-2948.
|
32. |
Obata A, Kasuga T. Cellular compatibility of bone-like apatite containing silicon species. J Biomed Res, 2007, 85(1): 140-144.
|