1. |
Shimono K, Nosé Y. The need to develop artificial bile ducts. Artif Organs, 1995, 19(2): 115-116.
|
2. |
陶亮, 李強, 丁義濤. 可降解膽管修復材料的研究進展. 中華肝膽外科雜志, 2011, 17 (9): 788-790.
|
3. |
竇春青, 周寧新. 組織工程化人工膽管材料學研究進展. 解放軍醫學雜志, 2007, 32(3): 276-277.
|
4. |
Ornitz DM, Iton N. Fibroblast growth factors. Grnome Biol, 2001, 2(2): REVIEWS3005.
|
5. |
Nakamura S, Nambu M, Ishizuka T, et al. Effect of controlled release of fibroblast growth factor-2 from chitosan/fucoidan micro complex-hydrogel on in vitro and in vivo vascularization. J Biomed Mater Res A, 2008, 85(3): 619-627.
|
6. |
徐勇, 耿智敏, 王居邠. 堿性成纖維細胞生長因子對膽腸吻合口愈合的影響. 中國修復重建外科雜志, 2005, 19(5): 341-343.
|
7. |
Nagase T, Hisatomi T, Koshima I, et al. Heterotopic ossification in the sacral pressure ulcer treated with basic fibroblast growth factor: coincidence or side effect? J Plast Reconstr Aesthet Surg, 2007, 60(3): 327-329.
|
8. |
李曉東, 孫文杰, 戴建武. 幾種常用生長因子的基因工程與創面修復. 中華損傷與修復雜志(電子版), 2007, 2(1): 51-54.
|
9. |
Zhao WX, Han Q, Lin H, et al. Improved neovascularization and wound repair by targeting human basic fibroblast growth factor (bFGF) to fibrin. J Mol Med (Berl), 2008, 86(10): 1127-1138.
|
10. |
Weidner N. Current pathologic methods for measuring intratumoral microvessel density within breast carcinoma and other solid tumors. Breast Cancer Res Treat, 1995, 36(2): 169-180.
|
11. |
Miyazawa M, Torii T, Toshimitsu Y, et al. A tissue engineered artificial bile duct grown to resemble the native bile duct. Am J Transplant, 2005, 5(6): 1541-1547.
|
12. |
Aikawa M, Miyazawa M, Okamoto K, et al. A novel treatment for bile duct injury with a tissue-engineered bioabsorbable polymer patch. Surgery, 2010, 147(4): 575-580.
|
13. |
Rosen M, Ponsky J, Petras R, et al. Small intestinal submucosa as a bioscaffold for biliary tract regeneration. Surgery, 2002, 132(3): 480-486.
|
14. |
Gómez NA, Zapatier JA, Vargas PE. Re: “Small intestinal submucosa as a bioscaffold for biliary tract regeneration”. Surgery, 2004, 135(4): 460.
|
15. |
Ismail A, Ramsis R, Sherif A, et al. Use of human amniotic stem cells for common bile duct reconstruction: vascularized support of a free amnion graft. Med Sci Monit, 2009, 15(9): BR243-247.
|
16. |
Nakashima S, Nakamura T, Miyagawa K, et al. In situ tissue engineering of the bile duct using polypropylene mesh-collagen tubes. Int J Artif Organs, 2007, 30(1): 75-85.
|
17. |
Nakashima S, Nakamura T, Han L, et al. Experimental biliary reconstruction with an artificial bile duct using in situ tissue engineering technique. Inflammation and Regeneration, 2007, 27(6): 579-585.
|
18. |
Sun W, Sun C, Lin H, et al. The effect of collagen-binding NGF-beta on the promotion of sciatic nerve regeneration in a rat sciatic nerve crush injury model. Biomaterials, 2009, 30(27): 4649-4656.
|
19. |
Chen W, Shi C, Yi S, et al. Bladder regeneration by collagen scaffolds with collagen binding human basicfi broblast growth factor. J Urol, 2010, 183(6): 2432-2439.
|
20. |
Shi C, Chen W, Zhao Y, et al. Regeneration of full-thickness abdominal wall defects in rats using collagen scaffolds loaded with collagen-binding basic fibroblast growth factor. Biomaterials, 2011, 32(3): 753-759.
|
21. |
Li X, Sun H, Lin N, et al. Regeneration of uterine horns in rats by collagen scaffolds loaded with collagen-binding human basic fibroblast growth factor. Biomaterials, 2011, 32(32): 8172-8181.
|