| 1. |
Lainez NM, Coss D. Obesity, neuroinflammation, and reproductive function. Endocrinology, 2019, 160(11): 2719-2736.
|
| 2. |
Frühbeck G, Toplak H, Woodward E, et al. Obesity: the gateway to ill health - an EASO position statement on a rising public health, clinical and scientific challenge in Europe. Obes Facts, 2013, 6(2): 117-120.
|
| 3. |
Rhea EM, Salameh TS, Logsdon AF, et al. Blood-brain barriers in obesity. AAPS J, 2017, 19(4): 921-930.
|
| 4. |
Gómez-Apo E, Mondragón-Maya A, Ferrari-Díaz M, et al. Structural brain changes associated with overweight and obesity. J Obes, 2021, 2021: 6613385.
|
| 5. |
Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here?. Nat Rev Neurol, 2021, 17(3): 157-172.
|
| 6. |
Van Dyken P, Lacoste B. Impact of metabolic syndrome on neuroinflammation and the blood-brain barrier. Front Neurosci, 2018, 12: 930.
|
| 7. |
Karczewski J, Zielińska A, Staszewski R, et al. Obesity and the Brain. Int J Mol Sci, 2022, 23(11): 6145.
|
| 8. |
邱均平, 沈恝諶, 宋艷輝. 近十年國內外計量經濟學研究進展與趨勢—基于 Citespace 的可視化對比研究. 現代情報, 2019, 39(2): 26-37.
|
| 9. |
陳悅, 陳超美, 劉則淵, 等. CiteSpace 知識圖譜的方法論功能. 科學學研究, 2015, 33(2): 242-253.
|
| 10. |
Liang C, Luo A, Zhong Z. Knowledge mapping of medication literacy study: a visualized analysis using CiteSpace. SAGE Open Med, 2018, 6: 2050312118800199.
|
| 11. |
范楊陽, 王天芳, 董儉, 等. 2014 年至 2018 年國內中醫英譯研究的文獻計量與可視化分析. 中華中醫藥雜志, 2020, 35(6): 3094-3097.
|
| 12. |
秦曉楠, 盧小麗, 武春友. 國內生態安全研究知識圖譜—基于 Citespace 的計量分析. 生態學報, 2014, 34(13): 3693-3703.
|
| 13. |
Kang DH, Heo RW, Yi CO, et al. High-fat diet-induced obesity exacerbates kainic acid-induced hippocampal cell death. Bmc Neurosci, 2015, 16: 72.
|
| 14. |
Nguyen JC, Killcross AS, Jenkins TA. Obesity and cognitive decline: role of inflammation and vascular changes. Front Neurosci, 2014, 8: 375.
|
| 15. |
Alexaki VI. The impact of obesity on microglial function: immune, metabolic and endocrine perspectives. Cells, 2021, 10(7): 1584.
|
| 16. |
Galea I. The blood-brain barrier in systemic infection and inflammation. Cell Mol Immunol, 2021, 18(11): 2489-2501.
|
| 17. |
Cheng J, Dong Y, Ma J, et al. Microglial Calhm2 regulates neuroinflammation and contributes to Alzheimer’s disease pathology. Sci Adv, 2021, 7(35): eabe3600.
|
| 18. |
Olsthoorn L, Vreeken D, Kiliaan AJ. Gut microbiome, inflammation, and cerebrovascular function: link between obesity and cognition. Front Neurosci, 2021, 15: 761456.
|
| 19. |
Dalile B, Van Oudenhove L, Vervliet B, et al. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol, 2019, 16(8): 461-478.
|
| 20. |
Lorena FB, do Nascimento BPP, Camargo ELRA, et al. Long-term obesity is associated with depression and neuroinflammation. Arch Endocrinol Metab, 2021, 65(5): 537-548.
|
| 21. |
de Oliveira S, Feijó GDS, Neto J, et al. Zinc supplementation decreases obesity-related neuroinflammation and improves metabolic function and memory in rats. Obesity (Silver Spring), 2021, 29(1): 116-124.
|
| 22. |
Lituma PJ, Woo E, O’Hara BF, et al. Altered synaptic connectivity and brain function in mice lacking microglial adapter protein Iba1. Proc Natl Acad Sci USA, 2021, 118(46): e2115539118.
|
| 23. |
Forte N, Fernández-Rilo AC, Palomba L, et al. Obesity affects the microbiota-gut-brain axis and the regulation thereof by endocannabinoids and related mediators. Int J Mol Sci, 2020, 21(5): 1554.
|
| 24. |
Arnoriaga-Rodríguez M, Mayneris-Perxachs J, Burokas A, et al. Obesity impairs short-term and working memory through gut microbial metabolism of aromatic amino acids. Cell Metab, 2020, 32(4): 548-560.e7.
|
| 25. |
Zeng Q, Li D, He Y, et al. Discrepant gut microbiota markers for the classification of obesity-related metabolic abnormalities. Sci Rep, 2019, 9(1): 13424.
|