| 1. |
Kijowski R, Fritz J, Deniz C M. Deep learning applications in osteoarthritis imaging. Skeletal Radiol, 2023, 52(11): 2225-2238.
|
| 2. |
Leszczyński P, Lisiński P, Kwiatkowska B, et al. Clinical expert statement on osteoarthritis: diagnosis and therapeutic choices. Reumatologia, 2025, 63(2): 104-115.
|
| 3. |
Safiri S, Kolahi A A, Smith E, et al. Global, regional and national burden of osteoarthritis 1990-2017: a systematic analysis of the Global Burden of Disease Study 2017. Ann Rheum Dis, 2020, 79(6): 819-828.
|
| 4. |
Scheuing W J, Reginato A M, Deeb M, et al. The burden of osteoarthritis: is it a rising problem. Best Pract Res Clin Rheumatol, 2023, 37(2): 101836.
|
| 5. |
González-Gutiérrez J, López-Gómez J J, Primo-Martín D, et al. Relationship between body composition parameters and quality of life in patients with obesity and osteoarthritis. Nutrition, 2025, 135: 112765.
|
| 6. |
Sun X, Zhen X, Liu K, et al. Body mass index and health-related quality of life of outpatients with knee osteoarthritis: evidence from a cross-sectional study. BMC Musculoskeletal Disorders, 2025, 26(1): 220.
|
| 7. |
Stachowiak G W, Wolski M, Woloszynski T, et al. Detection and prediction of osteoarthritis in knee and hand joints based on the X-ray image analysis. Biosurface and Biotribology, 2016, 2(4): 162-172.
|
| 8. |
Lévêque L, Outtas M, Liu H, et al. Comparative study of the methodologies used for subjective medical image quality assessment. Physics in Medicine and Biology, 2021, 66(15): 15TR02.
|
| 9. |
林書臣, 魏德健, 張帥, 等. 深度學習在膝關節骨關節炎磁共振診斷中的研究進展. 激光與光電子學進展, 2024, 61(14): 61-78.
|
| 10. |
劉云鵬, 干開豐, 李瑾, 等. X線片橈骨遠端骨折自動快速診斷研究. 生物醫學工程學雜志, 2024, 41(4): 798-806.
|
| 11. |
Chaddad A, Hu Y, Wu Y, et al. Generalizable and explainable deep learning for medical image computing: an overview. Current Opinion in Biomedical Engineering, 2025, 33: 100567.
|
| 12. |
楊培偉, 周余紅, 邢崗, 等. 卷積神經網絡在生物醫學圖像上的應用進展. 計算機工程與應用, 2021, 57(7): 44-58.
|
| 13. |
Ren Z, Liu S, Wang L, et al. Conv-SdMLPMixer: a hybrid medical image classification network based on multi-branch CNN and multi-scale multi-dimensional MLP. Information Fusion, 2025, 118: 102937.
|
| 14. |
Kshatri S S, Singh D. Convolutional neural network in medical image analysis: a review. Archives of Computational Methods in Engineering, 2023, 30(4): 2793-2810.
|
| 15. |
Lai Q, Vong C M, Yan T, et al. Hybrid multiple instance learning network for weakly supervised medical image classification and localization. Expert Systems with Applications, 2025, 260: 125362.
|
| 16. |
Kinger S. Deep learning for automatic knee osteoarthritis severity grading and classification. Indian Journal of Orthopaedics, 2024, 58(10): 1458-1473.
|
| 17. |
Yildirim M, Mutlu H B. Automatic detection of knee osteoarthritis grading using artificial intelligence-based methods. International Journal of Imaging Systems and Technology, 2024, 34(2): e23057.
|
| 18. |
Rani S, Memoria M, Almogren A, et al. Deep learning to combat knee osteoarthritis and severity assessment by using CNN-based classification. BMC Musculoskeletal Disorders, 2024, 25(1): 817.
|
| 19. |
Han K, Wang Y, Chen H, et al. A survey on vision transformer. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 87-110.
|
| 20. |
Liu Z, Lin Y, Cao Y, et al. Swin transformer: hierarchical vision transformer using shifted windows//Proceedings of the IEEE International Conference on Computer Vision, Online: ICCV, 2021: 10012-10022.
|
| 21. |
Pinasthika K, Laksono B S P, Irsal R B P, et al. SparseSwin: swin transformer with sparse transformer block. Neurocomputing, 2024, 580: 127433.
|
| 22. |
Jahan M, Hasan M Z, Samia I J, et al. KOA-CCTNet: an enhanced knee osteoarthritis grade assessment framework using modified compact convolutional transformer model. IEEE Access, 2024, 12: 107719-107741.
|
| 23. |
Zhang S, Omer A M, Tao N, et al. Swin transformer network leveraging multi-dimensional features for defect depth prediction. Infrared Physics and Technology, 2024, 139: 105288.
|
| 24. |
Tariq T, Suhail Z, Nawaz Z. A review for automated classification of knee osteoarthritis using KL grading scheme for X-rays. Biomedical Engineering Letters, 2024, 15(1): 1-35.
|
| 25. |
Sch?fer R, Nicke T, H?fener H, et al. Overcoming data scarcity in biomedical imaging with a foundational multi-task model. Nature Computational Science, 2024, 4(7): 495-509.
|
| 26. |
Gan H S, Ramlee M H, Wang Z, et al. A review on medical image segmentation: datasets, technical models, challenges and solutions. Wiley Interdisciplinary Reviews Data Mining and Knowledge Discovery, 2025, 15(1): e1574.
|
| 27. |
Wang J, Ruan D, Li Y, et al. Data augmentation strategies for semi-supervised medical image segmentation. Pattern Recognition, 2025, 159: 111116.
|
| 28. |
Nazir N, Sarwar A, Saini B S. Recent developments in denoising medical images using deep learning: an overview of models, techniques, and challenges. Micron, 2024, 180: 103615.
|
| 29. |
Ko J, Park S, Woo H G. Optimization of vision transformer-based detection of lung diseases from chest X-ray images. BMC Medical Informatics and Decision Making, 2024, 24(1): 191.
|
| 30. |
Jiang L, Zhang C, Zhang H, et al. A lightweight spatially-aware classification model for breast cancer pathology images. Biocybernetics and Biomedical Engineering, 2024, 44(3): 586-608.
|
| 31. |
Obi J C. A comparative study of several classification metrics and their performances on data. World Journal of Advanced Engineering Technology and Sciences, 2023, 8: 308-314.
|
| 32. |
Wang Y, Yao X, Liu Y, et al. Generating population migration flow data from inter-regional relations using graph convolutional network. International Journal of Applied Earth Observation and Geoinformation, 2023, 118: 103238.
|
| 33. |
Li Z P, Wang S G, Zhang Q H, et al. Graph pooling for graph-level representation learning: a survey. Artificial Intelligence Review, 2024, 58: 45.
|
| 34. |
Sathyanarayanan S, Tantri B R. Confusion matrix-based performance evaluation metrics. African Journal of Biomedical Research, 2024, 27(4S): 4023-4031.
|
| 35. |
Goswami A D. Automatic classification of the severity of knee osteoarthritis using enhanced image sharpening and CNN. Applied Sciences, 2023, 13(3): 1658.
|
| 36. |
Rehman S U, Gruhn V. A sequential VGG16+CNN based automated approach with adaptive input for efficient detection of knee osteoarthritis stages. IEEE Access, 2024, 12: 62407-62415.
|
| 37. |
Mathew D E, Ebem D U, Ikegwu A C, et al. Recent emerging techniques in explainable artificial intelligence to enhance the interpretable and understanding of AI models for human. Neural Processing Letters, 2025, 57(1): 16.
|
| 38. |
Marmolejo-Saucedo J A, Kose U. Numerical grad-cam based explainable convolutional neural network for brain tumor diagnosis. Mobile Networks and Applications, 2024, 29(1): 109-118.
|