| 1. |
He Y, Xu W, Xiao Y T, et al. Targeting signaling pathways in prostate cancer: mechanisms and clinical trials. Signal Transduct Target Ther, 2022, 7(1): 198.
|
| 2. |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018, 68(6): 394-424.
|
| 3. |
James S L, Abate D, Abate K H, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2018, 392(10159): 1789-1858.
|
| 4. |
Foreman K J, Marquez N, Dolgert A, et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016–40 for 195 countries and territories. Lancet, 2018, 392(10159): 2052-2090.
|
| 5. |
劉琨, 張明洋, 李浩然, 等. 人工智能技術在泌尿系統腫瘤診斷中的研究現狀及展望. 生物醫學工程學雜志, 2021, 38(6): 1219-1228.
|
| 6. |
He L, Long L R, Antani S, et al. Histology image analysis for carcinoma detection and grading. Comput Methods Programs Biomed, 2012, 107(3): 538-556.
|
| 7. |
Li Y, Ping W. Cancer metastasis detection with neural conditional random field. arXiv preprint, 2018: 1806.07064.
|
| 8. |
Tellez D, Litjens G, Van der Laak J, et al. Neural image compression for gigapixel histopathology image analysis. IEEE Trans Pattern Anal Mach Intell, 2019, 43(2): 567-578.
|
| 9. |
Wang D, Khosla A, Gargeya R, et al. Deep learning for identifying metastatic breast cancer. arXiv preprint, 2016: 1606.05718.
|
| 10. |
Wang Y, Kartasalo K, Weitz P, et al. Predicting molecular phenotypes from histopathology images: a transcriptome-wide expression–morphology analysis in breast cancer. Cancer Res, 2021, 81(19): 5115-5126.
|
| 11. |
Zhang H, Kalirai H, Acha-Sagredo A, et al. Piloting a deep learning model for predicting nuclear BAP1 immunohistochemical expression of uveal melanoma from hematoxylin-and-eosin sections. Transl Vis Sci Technol, 2020, 9(2): 50.
|
| 12. |
Zhang H, Meng Y, Qian X, et al. A regularization term for slide correlation reduction in whole slide image analysis with deep learning// Medical Imaging with Deep Learning. Lübeck: PMLR, 2021: 842-854.
|
| 13. |
Myronenko A, Xu Z, Yang D, et al. Accounting for dependencies in deep learning based multiple instance learning for whole slide imaging// Medical Image Computing and Computer-Assisted Intervention-MICCAI 2021: 24th International Conference. Strasbourg: Springer International Publishing, 2021: 329-338.
|
| 14. |
Srinidhi C L, Ciga O, Martel A L. Deep neural network models for computational histopathology: A survey. Med Image Anal, 2021, 67: 101813.
|
| 15. |
Wang X, Chen H, Gan C, et al. Weakly supervised deep learning for whole slide lung cancer image analysis. IEEE Trans Cybern, 2019, 50(9): 3950-3962.
|
| 16. |
Zhou Z H. A brief introduction to weakly supervised learning. Natl Sci Rev, 2018, 5(1): 44-53.
|
| 17. |
Lu M Y, Chen R J, Wang J, et al. Semi-supervised histology classification using deep multiple instance learning and contrastive predictive coding. arXiv preprint, 2019: 1910.10825.
|
| 18. |
Meng Y, Zhang H, Zhao Y, et al. Spatial uncertainty-aware semi-supervised crowd counting// Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Montreal: IEEE, 2021: 15549-15559.
|
| 19. |
Amores J. Multiple instance classification: Review, taxonomy and comparative study. Artif Intell, 2013, 201: 81-105.
|
| 20. |
Chen Z, Chi Z, Fu H, et al. Multi-instance multi-label image classification: A neural approach. Neurocomputing, 2013, 99: 298-306.
|
| 21. |
Dietterich T G, Lathrop R H, Lozano-Pérez T. Solving the multiple instance problem with axis-parallel rectangles. Artif Intell, 1997, 89(1-2): 31-71.
|
| 22. |
Maron O, Lozano-Pérez T. A framework for multiple-instance learning// Neural Information Processing Systems (NeurIPS). Denver: NIPS Foundation, 1997.
|
| 23. |
Ilse M, Tomczak J, Welling M. Attention-based deep multiple instance learning// International Conference on Machine Learning (LCML). Stockholm: PMLR, 2018: 2127-2136.
|
| 24. |
Lerousseau M, Vakalopoulou M, Classe M, et al. Weakly supervised multiple instance learning histopathological tumor segmentation// Medical Image Computing and Computer-Assisted Intervention-MICCAI 2020: 23rd International Conference. Lima: Springer International Publishing, 2020: 470-479.
|
| 25. |
Zhang H, Meng Y, Zhao Y, et al. DTFD-MIL: Double-tier feature distillation multiple instance learning for histopathology whole slide image classification// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans: IEEE, 2022: 18802-18812.
|
| 26. |
Shao Z, Bian H, Chen Y, et al. Transmil: Transformer based correlated multiple instance learning for whole slide image classification. Adv Neural Inf Process Syst, 2021, 34: 2136-2147.
|
| 27. |
Yang S, Wang Y, Chen H. Mambamil: Enhancing long sequence modeling with sequence reordering in computational pathology// Medical Image Computing and Computer-Assisted Intervention-MICCAI 2024: 24th International Conference. Marrakesh: Springer Nature Switzerland, 2024: 296-306.
|
| 28. |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 770-778.
|
| 29. |
Xu G, Song Z, Sun Z, et al. Camel: A weakly supervised learning framework for histopathology image segmentation// Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Seoul: IEEE, 2019: 10682-10691.
|
| 30. |
Bejnordi B E, Veta M, Van Diest P J, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA, 2017, 318(22): 2199-2210.
|