| 1. |
Inose H, Hirai T, Yoshii T, et al. Predictors associated with neurological recovery after anterior decompression with fusion for degenerative cervical myelopathy. BMC Surg, 2021, 21(1): 144.
|
| 2. |
Walter C, Baumg?rtner T, Trappe D, et al. Influence of cage design on radiological and clinical outcomes in dorsal lumbar spinal fusions: a comparison of lordotic and non-lordotic cages. Orthop Surg, 2021, 13(3): 863-875.
|
| 3. |
Shen J L, Xu S, Xu S X, et al. Fusion or not for degenerative lumbar spinal stenosis: a meta-analysis and systematic review. Pain Physician, 2018, 21(1): 1-8.
|
| 4. |
Verma R, Virk S, Qureshi S. Interbody fusions in the lumbar spine: a review. HSS J, 2020, 16(2): 162-167.
|
| 5. |
Bydon M, Goyal A, Yolcu Y. Novel intervertebral technologies. Neurosurg Clin N Am, 2020, 31(1): 49-56.
|
| 6. |
胡美娟, 吉玲康, 馬秋榮, 等. 激光增材制造技術及現狀研究. 石油管材與儀器, 2019, 5(5): 1-6.
|
| 7. |
Bremen S, Meiners W, Diatlov A. Selective laser melting: a manufacturing technology for the future?. Laser Tech J, 2012, 9(2): 33-38.
|
| 8. |
Marola S, Manfredi D, Fiore G, et al. A comparison of selective laser melting with bulk rapid solidification of AlSi10Mg alloy. J Alloys Compd, 2018, 742: 271-279.
|
| 9. |
Pacheco V, Karlsson D, Marattukalam J J, et al. Thermal stability and crystallization of a Zr-based metallic glass produced by suction casting and selective laser melting. J Alloys Compd, 2020, 825: 153995.
|
| 10. |
Cao Q Q, Shi Z Q, Bai Y C, et al. A novel method to improve the removability of cone support structures in selective laser melting of 316L stainless steel. J Alloys Compd, 2021, 854: 157133.
|
| 11. |
Dave V R, Matz J E, Eagar T W. Electron beam solid freeform fabrication of metal parts//Proceedings of the Solid Freeform Fabrication Symposium. Austin: University of Texas, 1995: 64-71.
|
| 12. |
Yuan L, Ding S, Wen C. Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: a review. Bioact Mater, 2019, 4(1): 56-70.
|
| 13. |
Sabzi H E. Powder bed fusion additive layer manufacturing of titanium alloys. Mater Sci Technol, 2019, 35(8): 875-890.
|
| 14. |
楊坤. 粉床電子束增材制造生物醫用鈦合金的組織與性能研究. 長春: 吉林大學, 2020.
|
| 15. |
Buj-Corral I, Tejo-Otero A, Fenollosa-Artés F. Development of AM technologies for metals in the sector of medical implants. Metals, 2020, 10(5): 686.
|
| 16. |
Wong K C, Scheinemann P. Additive manufactured metallic implants for orthopaedic applications. Sci China Mater, 2018, 61(4): 440-454.
|
| 17. |
Popov V J, Muller-Kamskii G, Kovalevsky A, et al. Design and 3D-printing of titanium bone implants: brief review of approach and clinical cases. Biomed Eng Lett, 2018, 8(4): 337-344.
|
| 18. |
Moiduddin K. Implementation of computer-assisted design, analysis, and additive manufactured customized mandibular implants. J Med Biol Eng, 2018, 38(5): 744-756.
|
| 19. |
Jinoop A N, Subbu S K, Kumar R A. Mechanical and microstructural characterisation on direct metal laser sintered Inconel 718. Int J Additive and Subtractive Materials Manufacturing, 2018, 2(1): 1-12.
|
| 20. |
Brogini S, Sartori M, Giavaresi G, et al. Osseointegration of additive manufacturing Ti-6Al-4V and Co-Cr-Mo alloys, with and without surface functionalization with hydroxyapatite and type I collagen. J Mech Behav Biomed Mater, 2021, 115: 104262.
|
| 21. |
Srinivasan D, Singh A, Reddy A S, et al. Microstructural study and mechanical characterisation of heat-treated direct metal laser sintered Ti6Al4V for biomedical applications. Mater Technol, 2020: 1-12.
|
| 22. |
Buj-Corral I, Domínguez-Fernández A, Gómez-Gejo A. Effect of printing parameters on dimensional error and surface roughness obtained in direct ink writing (DIW) processes. Materials, 2020, 13(9): 2157.
|
| 23. |
Shanmugam V, Das O, Babu K, et al. Fatigue behaviour of FDM-3D printed polymers, polymeric composites and architected cellular materials. Int J Fatigue, 2020, 143: 106007.
|
| 24. |
Azad M A, Olawuni D, Kimbell G, et al. Polymers for extrusion-based 3D printing of pharmaceuticals: a holistic materials-process perspective. Pharmaceutics, 2020, 12(2): 124.
|
| 25. |
Rinaldi M, Ghidini T, Cecchini F, et al. Additive layer manufacturing of poly (ether ether ketone) via FDM. Composites (Part B), 2018, 145: 162-172.
|
| 26. |
Warburton A, Girdler S J, Mikhail C M, et al. Biomaterials in spinal implants: a review. Neurospine, 2020, 17(1): 101-110.
|
| 27. |
Zhang Z, Li H, Fogel G R, et al. Finite element model predicts the biomechanical performance of transforaminal lumbar interbody fusion with various porous additive manufactured cages. Comput Biol Med, 2018, 95: 167-174.
|
| 28. |
Enders J J, Coughlin D, Mroz T E, et al. Surface technologies in spinal fusion. Neurosurg Clin N Am, 2020, 31(1): 57-64.
|
| 29. |
楊柳, 王富友. 醫學 3D 打印多孔鉭在骨科的應用. 第三軍醫大學學報, 2019, 41(19): 1859-1866.
|
| 30. |
Zhang W N, Wang L Z, Feng Z X, et al. Research progress on selective laser melting (SLM) of Magnesium alloys: a review. Optik, 2020, 207: 163842.
|
| 31. |
朱兆雨. 激光選區熔化鎂合金成型工藝和組織性能研究. 蘇州: 蘇州大學, 2019.
|
| 32. |
Daentzer D, Willbold E, Kalla K, et al. Bioabsorbable interbody magnesium-polymer cage: degradation kinetics, biomechanical stiffness, and histological findings from an ovine cervical spine fusion model. Spine, 2014, 39(20): E1220-E1227.
|
| 33. |
Haleem A, Javaid M. Polyether ether ketone (PEEK) and its 3D printed implants applications in medical field: an overview. Clin Epidemiol Glob, 2019, 7(4): 571-577.
|
| 34. |
Basgul C, Yu T, Macdonald D W, et al. Structure-property relationships for 3D printed PEEK intervertebral lumbar cages produced using fused filament fabrication. J Mater Res, 2018, 33(14): 2040-2051.
|
| 35. |
Basgul C, Yu T, Macdonald D W, et al. Does annealing improve the interlayer adhesion and structural integrity of FFF 3D printed PEEK lumbar spinal cages?. J Mech Behav Biomed Mater, 2020, 102: 103455.
|
| 36. |
Basgul C, Macdonald D W, Siskey R, et al. Thermal localization improves the interlayer adhesion and structural integrity of 3D printed PEEK lumbar spinal cages. Materialia, 2020, 10: 100650.
|
| 37. |
Duan Y S, Liu N, Zhang J X, et al. Cost effective preparation of Si3N4 ceramics with improved thermal conductivity and mechanical properties. J Eur Ceram Soc, 2020, 40(2): 298-304.
|
| 38. |
Rodzeń K, Sharma P K, Mcilhagger A, et al. The direct 3D printing of functional PEEK/hydroxyapatite composites via a fused filament fabrication approach. Polymers, 2021, 13(4): 545.
|
| 39. |
楊接來, 徐俊, 谷輝杰, 等. 3D 打印聚乳酸/納米級 β-磷酸鈣可吸收山羊頸椎融合器的生物相容性及生物力學評價. 中國臨床醫學, 2017, 24(4): 525-530.
|
| 40. |
從銘. 3D 打印羥基磷灰石椎間融合器及生物力學分析. 青島: 青島大學, 2016.
|
| 41. |
Burnard J L, Parr W, Choy W J, et al. 3D-printed spine surgery implants: a systematic review of the efficacy and clinical safety profile of patient-specific and off-the-shelf devices. Eur Spine J, 2020, 29(6): 1248-1260.
|
| 42. |
Mokawem M, Katzouraki G, Harman C L, et al. Lumbar interbody fusion rates with 3D-printed lamellar titanium cages using a silicate-substituted calcium phosphate bone graft. J Clin Neurosci, 2019, 68: 134-139.
|
| 43. |
Chung S S, Lee K J, Kwon Y B, et al. Characteristics and efficacy of a new 3-dimensional printed mesh structure Titanium alloy spacer for posterior lumbar interbody fusion. Orthopedics, 2017, 40(5): e880-e885.
|
| 44. |
van den Brink W, Lamerigts N. Complete osseointegration of a retrieved 3-D printed porous titanium cervical cage. Front Surg, 2020, 7: 526020.
|
| 45. |
劉正蓬, 王雅輝, 張義龍, 等. 3D 打印椎間融合器置入治療脊髓型頸椎病: 頸椎曲度及椎間高度恢復的半年隨訪. 中國組織工程研究, 2021, 25(6): 849-853.
|
| 46. |
楊旭, 趙曉峰, 齊德泰, 等. 3D 打印 ACT 鈦金骨小梁椎間融合器行頸椎前路減壓融合后頸椎的矢狀位平衡變化. 中國組織工程研究, 2020, 24(36): 5741-5748.
|
| 47. |
Arts M, Torensma B, Wolfs J. Porous Titanium cervical interbody fusion device in the treatment of degenerative cervical radiculopathy; 1-year results of a prospective controlled trial. Spine J, 2020, 20(7): 1065-1072.
|
| 48. |
Spetzger U, Frasca M, K?nig S A. Surgical planning, manufacturing and implantation of an individualized cervical fusion Titanium cage using patient-specific data. Eur Spine J, 2016, 25(7): 2239-2246.
|
| 49. |
吳敏飛, 王洋, 矯健航, 等. 3D 打印椎間融合器在脊髓型頸椎病椎間盤摘除減壓融合內固定術的應用效果. 中華骨與關節外科雜志, 2019, 12(2): 98-101.
|
| 50. |
Siu T L, Rogers J M, LIN K, et al. Custom-made titanium 3-dimensional printed interbody cages for treatment of osteoporotic fracture-related spinal deformity. World Neurosurg, 2018, 111: 1-5.
|
| 51. |
夏天, 孫宇, 趙衍斌, 等. 3D 打印定制鈦合金融合器在先天性頸椎側凸畸形治療中的應用. 中國脊柱脊髓雜志, 2020, 30(9): 791-796.
|
| 52. |
Alam F, Varadarajan K M, Koo J H, et al. Additively manufactured polyetheretherketone (PEEK) with carbon nanostructure reinforcement for biomedical structural applications. Adv Eng Mater, 2020, 22(10): 2000483.
|
| 53. |
Li Y, Li L T, Ma Y G, et al. 3D-printed titanium cage with PVA‐vancomycin coating prevents surgical site infections (SSIs). Macromol Biosci, 2020, 20(3): 1900394.
|