• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "support vector machine" 34 results
        • Study on Information Extraction of Clinic Expert Information from Hospital Portals

          Clinic expert information provides important references for residents in need of hospital care. Usually, such information is hidden in the deep web and cannot be directly indexed by search engines. To extract clinic expert information from the deep web, the first challenge is to make a judgment on forms. This paper proposes a novel method based on a domain model, which is a tree structure constructed by the attributes of search interfaces. With this model, search interfaces can be classified to a domain and filled in with domain keywords. Another challenge is to extract information from the returned web pages indexed by search interfaces. To filter the noise information on a web page, a block importance model is proposed. The experiment results indicated that the domain model yielded a precision 10.83% higher than that of the rule-based method, whereas the block importance model yielded an F1 measure 10.5% higher than that of the XPath method.

          Release date: Export PDF Favorites Scan
        • Differentiation of autoimmune pancreatitis and pancreatic ductal adenocarcinoma based on multi-modality texture features in 18F-FDG PET/CT

          Autoimmune pancreatitis (AIP) is a unique subtype of chronic pancreatitis, which shares many clinical presentations with pancreatic ductal adenocarcinoma (PDA). The misdiagnosis of AIP often leads to unnecessary pancreatic resection. 18F-FDG positron emission tomography/ computed tomography (PET/CT) could provide comprehensive information on the morphology, density, and functional metabolism of the pancreas at the same time. It has been proved to be a promising modality for noninvasive differentiation between AIP and PDA. However, there is a lack of clinical analysis of PET/CT image texture features. Difficulty still remains in differentiating AIP and PDA based on commonly used diagnostic methods. Therefore, this paper studied the differentiation of AIP and PDA based on multi-modality texture features. We utilized multiple feature extraction algorithms to extract the texture features from CT and PET images at first. Then, the Fisher criterion and sequence forward floating selection algorithm (SFFS) combined with support vector machine (SVM) was employed to select the optimal multi-modality feature subset. Finally, the SVM classifier was used to differentiate AIP from PDA. The results prove that texture analysis of lesions helps to achieve accurate differentiation of AIP and PDA.

          Release date:2019-12-17 10:44 Export PDF Favorites Scan
        • Automatic classification of first-episode, drug-naive schizophrenia with multi-modal magnetic resonance imaging

          A great number of studies have demonstrated the structural and functional abnormalities in chronic schizophrenia (SZ) patients. However, few studies analyzed the differences between first-episode, drug-naive SZ (FESZ) patients and normal controls (NCs). In this study, we recruited 44 FESZ patients and 56 NCs, and acquired their multi-modal magnetic resonance imaging (MRI) data, including structural and resting-state functional MRI data. We calculated gray matter volume (GMV), regional homogeneity (ReHo), amplitude of low frequency fluctuation (ALFF), and degree centrality (DC) of 90 brain regions, basing on an automated anatomical labeling (AAL) atlas. We then applied these features into support vector machine (SVM) combined with recursive feature elimination (RFE) to discriminate FESZ patients from NCs. Our results showed that the classifier using the combination of ReHo and ALFF as input features achieved the best performance (an accuracy of 96.97%). Moreover, the most discriminative features for classification were predominantly located in the frontal lobe. Our findings may provide potential information for understanding the neuropathological mechanism of SZ and facilitate the development of biomarkers for computer-aided diagnosis of SZ patients.

          Release date:2017-10-23 02:15 Export PDF Favorites Scan
        • Tract-based spatial statistics analysis on the white matter of patients with temporal lobe epilepsy and automatic recognition

          This study aims to determine the salient brain regions with abnormal changes in white matter structures from diffusion tensor imaging (DTI) images of the patients with temporal lobe epilepsy (TLE), and to discriminate the patients with TLE from normal controls (NCs). Firstly, the DTI images from 50 subjects (28 NCs and 22 TLE) were acquired. Secondly, the four measures including the fractional anisotropy (FA), the mean diffusivity (MD), the axial diffusivity (AD) and the radial diffusivity (RD) were calculated. Thirdly, the tract-based spatial statistics (TBSS) was adopted to extract the measures in brain regions with significant differences between the two compared groups. Fourthly, the obtained measures were used as input features of the support vector machine (SVM) for classification, and the support vector machine-recursive feature elimination (SVM-RFE) was compared with the support vector machine-tract-based spatial statistics (SVM-TBSS) method. Finally, the essential brain regions and their spatial distribution were analyzed and discussed. The experimental results showed that the FA measures of the TLE group decreased significantly in the corpus callosum, superior longitudinal fasciculus, corona radiata, external capsule, internal capsule, inferior fronto-occipital fasciculus, fasciculus uncinatus and sagittal stratum, which were nearly bilaterally distributed, while the MD and RD increased significantly in most of these brain regions of the TLE group. Although the AD also increased, the differences were not statistically significant. The SVM-TBSS classifier obtained accuracies of 82%, 76% and 76% using the FA, MD and RD for classification, respectively, and 80% using combined measures. The SVM-RFE classifier obtained accuracies of 90%, 90% and 92% using the FA, MD and RD respectively, while the highest accuracy was 100% using combined measures. These results demonstrated that the SVM-RFE outperformed the SVM-TBSS, and the dominant characteristic influencing classification in brain regions were in associative and commissural fibers. These results illustrated that the measures of DTI images could reveal the abnormal changes in white matter structure of patients with TLE, providing effective information to clarify its pathological mechanism, localize the focus and diagnose automatically.

          Release date:2017-08-21 04:00 Export PDF Favorites Scan
        • Research on high-efficiency electrocardiogram automatic classification based on autoregressive moving average model fitting

          The automatic detection of arrhythmia is of great significance for the early prevention and diagnosis of cardiovascular diseases. Traditional arrhythmia diagnosis is limited by expert knowledge and complex algorithms, and lacks multi-dimensional feature representation capabilities, which is not suitable for wearable electrocardiogram (ECG) monitoring equipment. This study proposed a feature extraction method based on autoregressive moving average (ARMA) model fitting. Different types of heartbeats were used as model inputs, and the characteristic of fast and smooth signal was used to select the appropriate order for the arrhythmia signal to perform coefficient fitting, and complete the ECG feature extraction. The feature vectors were input to the support vector machine (SVM) classifier and K-nearest neighbor classifier (KNN) for automatic ECG classification. MIT-BIH arrhythmia database and MIT-BIH atrial fibrillation database were used to verify in the experiment. The experimental results showed that the feature engineering composed of the fitting coefficients of the ARMA model combined with the SVM classifier obtained a recall rate of 98.2% and a precision rate of 98.4%, and the F1 index was 98.3%. The algorithm has high performance, meets the needs of clinical diagnosis, and has low algorithm complexity. It can use low-power embedded processors for real-time calculations, and it’s suitable for real-time warning of wearable ECG monitoring equipment.

          Release date:2021-12-24 04:01 Export PDF Favorites Scan
        • White matter microstructural alterations and classification of patients with different subtypes of attention-deficit/hyperactivity disorder

          Objective To explore the white matter microstructural abnormalities in patients with different subtypes of attention-deficit/hyperactivity disorder (ADHD) and establish a diagnostic classification model. Methods Patients with ADHD admitted to West China Hospital of Sichuan University between January 2019 and September 2021 and healthy controls recruited through advertisement were prospectively selected. All participants underwent diffusion tensor imaging scanning. The whole brain voxel-based analysis was used to compare the diffusion parameter maps of fractional anisotropy (FA) among patients with combined subtype of ADHD (ADHD-C), patients with inattentive subtype of ADHD (ADHD-I) and healthy controls. The support vector machine classifier and feature selection method were used to construct the individual ADHD diagnostic classification model and efficiency was evaluated between each two groups of the ADHD patients and healthy controls. Results A total of 26 ADHD-C patients, 24 ADHD-I patients and 26 healthy controls were included. The three groups showed significant differences in FA values in the bilateral sagittal stratum of temporal lobe (ADHD-C<ADHD-I<healthy controls) and the isthmus of corpus callosum (ADHD-C>ADHD-I>healthy controls) (P<0.005). The direct comparison between the two subtypes of ADHD showed that ADHD-C had higher FA than ADHD-I in the right middle frontal gyrus. The classification model differentiating ADHD-C and ADHD-I showed the highest efficiency, with a total accuracy of 76.0%, sensitivity of 88.5%, and specificity of 70.8%. Conclusions There is both commonality and heterogeneity in white matter microstructural alterations in the two subtypes of patients with ADHD. The white matter damage of the sagittal stratum of temporal lobe and the corpus callosum may be the intrinsic pathophysiological basis of ADHD, while the anomalies of frontal brain region may be the differential point between different subtypes of patients.

          Release date:2023-03-17 09:43 Export PDF Favorites Scan
        • Prediction of seizures in sleep based on power spectrum

          Seizures during sleep increase the probability of complication and sudden death. Effective prediction of seizures in sleep allows doctors and patients to take timely treatments to reduce the aforementioned probability. Most of the existing methods make use of electroencephalogram (EEG) to predict seizures, which are not specific developed for the sleep. However, EEG during sleep has its characteristics compared with EEG during other states. Therefore, in order to improve the sensitivity and reduce the false alarm rate, this paper utilized the characteristics of EEG to predict seizures during sleep. We firstly constructed the feature vector including the absolute power spectrum, the relative power spectrum and the power spectrum ratio in different frequencies. Secondly, the separation criterion and branch-and-bound method were applied to select features. Finally, support vector machine classifier were trained, which is then employed for online prediction. Compared with the existing method that do not consider the characteristics of sleeping EEG (sensitivity 91.67%, false alarm rate 9.19%), the proposed method was superior in terms of sensitivity (100%) and false alarm rate (2.11%). This method can improve the existing epilepsy prediction methods and has important clinical value.

          Release date:2018-08-23 03:47 Export PDF Favorites Scan
        • Application of machine learning algorithm in clinical diagnosis and survival prognosis analysis of lung cancer

          Lung cancer is one of the tumors with the highest incidence rate and mortality rate in the world. It is also the malignant tumor with the fastest growing number of patients, which seriously threatens human life. How to improve the accuracy of diagnosis and treatment of lung cancer and the survival prognosis is particularly important. Machine learning is a multi-disciplinary interdisciplinary specialty, covering the knowledge of probability theory, statistics, approximate theory and complex algorithm. It uses computer as a tool and is committed to simulating human learning methods, and divides the existing content into knowledge structures to effectively improve learning efficiency and being able to integrate computer science and statistics into medical problems. Through the introduction of algorithm to absorb the input data, and the application of computer analysis to predict the output value within the acceptable accuracy range, identify the patterns and trends in the data, and finally learn from previous experience, the development of this technology brings a new direction for the diagnosis and treatment of lung cancer. This article will review the performance and application prospects of different types of machine learning algorithms in the clinical diagnosis and survival prognosis analysis of lung cancer.

          Release date:2022-06-24 01:25 Export PDF Favorites Scan
        • Pattern recognition analysis of Alzheimer’s disease based on brain structure network

          Alzheimer’ s disease is the most common kind of dementia without effective treatment. Via early diagnosis, early intervention after diagnosis is the most effective way to handle this disease. However, the early diagnosis method remains to be studied. Neuroimaging data can provide a convenient measurement for the brain function and structure. Brain structure network is a good reflection of the fiber structural connectivity patterns between different brain cortical regions, which is the basis of brain’s normal psychology function. In the paper, a brain structure network based on pattern recognition analysis was provided to realize an automatic diagnosis research of Alzheimer’s disease and gray matter based on structure information. With the feature selection in pattern recognition, this method can provide the abnormal regions of brain structural network. The research in this paper analyzed the patterns of abnormal structural network in Alzheimer’s disease from the aspects of connectivity and node, which was expected to provide updated information for the research about the pathological mechanism of Alzheimer’s disease.

          Release date:2019-02-18 03:16 Export PDF Favorites Scan
        • An Assessment Method of Electroencephalograph Signals in Severe Disorders of Consciousness Based on Entropy

          This paper explores a methodology used to discriminate the electroencephalograph (EEG) signals of patients with vegetative state (VS) and those with minimally conscious state (MCS). The model was derived from the EEG data of 33 patients in a calling name stimulation paradigm. The preprocessing algorithm was applied to remove the noises in the EEG data. Two types of features including sample entropy and multiscale entropy were chosen. Multiple kernel support vector machine was investigated to perform the training and classification. The experimental results showed that the alpha rhythm features of EEG signals in severe disorders of consciousness were significant. We achieved the average classification accuracy of 88.24%. It was concluded that the proposed method for the EEG signal classification for VS and MCS patients was effective. The approach in this study may eventually lead to a reliable tool for identifying severe disorder states of consciousness quantitatively. It would also provide the auxiliary basis of clinical assessment for the consciousness disorder degree.

          Release date:2016-10-24 01:24 Export PDF Favorites Scan
        4 pages Previous 1 2 3 4 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜