• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "principle component analysis" 2 results
        • Feature Extraction for Cough-sound Recognition Based on Principle Component Analysis and Non-uniform Filter-bank

          Cough recognition provides important clinical information for the treatment of many respiratory diseases. A new Mel frequency cepstrum coefficient (MFCC) extracting method has been proposed on the basis of the distributional characteristics of cough spectrum. The whole frequency band was divided into several sub-bands, and the energy coefficient for each band was obtained by method of principle component analysis. Then non-uniform filter-bank in Mel frequency is designed to improve the extracting process of MFCC by distributing filters according to the spectrum energy coefficients. Cough recognition experiment using hidden Markov model was carried out, and the results showed that the proposed method could effectively improve the performance of cough recognition.

          Release date: Export PDF Favorites Scan
        • The value of biphasic CT in the diagnosis of chronic obstructive pulmonary disease

          Objective To investigate the feasibility of diagnosis of potential chronic obstructive pulmonary disease (COPD) patients who cannot finish the pulmonary function test via biphasic CT scan. Methods Sixty-seven male individuals aged 43 to 74 (57.0±5.9) years were divided into a COPD group (n=26) and a control group (n=41). All individuals underwent biphasic quantitative CT scan for calculating the proportion of emphysema, functional small airway disease, and normal component of the whole lung and each lobe. Results Based on principle component analysis, two principal components “imaging feature function 1 and imaging feature function 2” were calculated and analyzed by logistic regression, which found that imaging feature function 1 was an independent risk factor of COPD (odds ratio=8.749, P<0.001), and imaging features function 1 could be used to assist the diagnosis of COPD (area under receiver operating characteristic curve=0.843, P<0.001). Conclusion Imaging features function 1 is an independent risk factor for COPD and can assist the diagnosis of COPD.

          Release date:2022-06-10 01:02 Export PDF Favorites Scan
        1 pages Previous 1 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜