• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "feature extraction" 32 results
        • Detection of inferior myocardial infarction based on densely connected convolutional neural network

          Inferior myocardial infarction is an acute ischemic heart disease with high mortality, which is easy to induce life-threatening complications such as arrhythmia, heart failure and cardiogenic shock. Therefore, it is of great clinical value to carry out accurate and efficient early diagnosis of inferior myocardial infarction. Electrocardiogram is the most sensitive means for early diagnosis of inferior myocardial infarction. This paper proposes a method for detecting inferior myocardial infarction based on densely connected convolutional neural network. The method uses the original electrocardiogram (ECG) signals of serially connected Ⅱ, Ⅲ and aVF leads as the input of the model and extracts the robust features of the ECG signals by using the scale invariance of the convolutional layers. The characteristic transmission of ECG signals is enhanced by the dense connectivity between different layers, so that the network can automatically learn the effective features with strong robustness and high recognition, so as to achieve accurate detection of inferior myocardial infarction. The Physikalisch Technische Bundesanstalt diagnosis public ECG database was used for verification. The accuracy, sensitivity and specificity of the model reached 99.95%, 100% and 99.90%, respectively. The accuracy, sensitivity and specificity of the model are also over 99% even though the noise exists. Based on the results of this study, it is expected that the method can be introduced in the clinical environment to help doctors quickly diagnose inferior myocardial infarction in the future.

          Release date:2020-04-18 10:01 Export PDF Favorites Scan
        • Tensor Feature Extraction Using Multi-linear Principal Component Analysis for Brain Computer Interface

          The brain computer interface (BCI) can be used to control external devices directly through electroencephalogram (EEG) information. A multi-linear principal component analysis (MPCA) framework was used for the limitations of tensor form of multichannel EEG signals processing based on traditional principal component analysis (PCA) and two-dimensional principal component analysis (2DPCA). Based on MPCA, we used the projection of tensor-matrix to achieve the goal of dimensionality reduction and features exaction. Then we used the Fisher linear classifier to classify the features. Furthermore, we used this novel method on the BCI competitionⅡdataset 4 and BCI competitionⅣdataset 3 in the experiment. The second-order tensor representation of time-space EEG data and the third-order tensor representation of time-space-frequency EEG data were used. The best results that were superior to those from other dimensionality reduction methods were obtained by much debugging on parameter P and testQ. For two-order tensor, the highest accuracy rates could be achieved as 81.0% and 40.1%, and for three-order tensor, the highest accuracy rates were 76.0% and 43.5%, respectively.

          Release date: Export PDF Favorites Scan
        • Image Feature Extraction and Discriminant Analysis of Xinjiang Uygur Medicine Based on Color Histogram

          Image feature extraction is an important part of image processing and it is an important field of research and application of image processing technology. Uygur medicine is one of Chinese traditional medicine and researchers pay more attention to it. But large amounts of Uygur medicine data have not been fully utilized. In this study, we extracted the image color histogram feature of herbal and zooid medicine of Xinjiang Uygur. First, we did preprocessing, including image color enhancement, size normalizition and color space transformation. Then we extracted color histogram feature and analyzed them with statistical method. And finally, we evaluated the classification ability of features by Bayes discriminant analysis. Experimental results showed that high accuracy for Uygur medicine image classification was obtained by using color histogram feature. This study would have a certain help for the content-based medical image retrieval for Xinjiang Uygur medicine.

          Release date: Export PDF Favorites Scan
        • The Present Situation and Future Development of Research on New Algorithms of Gait Recognition with Multi-angles

          Gait recognition is a new technology in biometric recognition and medical treatment which has advantages such as long-distance and non-invasiveness. Depending on the differences between different people's walking postures, we can recognize individuals by characteristics extracted from the images of walking movement. A complete gait recognition process usually includes gait sequence acquisition, gait detection, feature extracting and recognition. In this paper, the commonly used methods of these four processes are introduced, and feature extraction methods are classified from different multi-angle views. And then the new algorithm of multi-view emerged in recent years is highlighted. In addition, this paper summarizes the existing difficulties of gait recognition, and looks into the future development trends of it.

          Release date: Export PDF Favorites Scan
        • Feature Extraction for Cough-sound Recognition Based on Principle Component Analysis and Non-uniform Filter-bank

          Cough recognition provides important clinical information for the treatment of many respiratory diseases. A new Mel frequency cepstrum coefficient (MFCC) extracting method has been proposed on the basis of the distributional characteristics of cough spectrum. The whole frequency band was divided into several sub-bands, and the energy coefficient for each band was obtained by method of principle component analysis. Then non-uniform filter-bank in Mel frequency is designed to improve the extracting process of MFCC by distributing filters according to the spectrum energy coefficients. Cough recognition experiment using hidden Markov model was carried out, and the results showed that the proposed method could effectively improve the performance of cough recognition.

          Release date: Export PDF Favorites Scan
        • Research of the Late Positive Potential of Emotional Cognitive Reappraisal Electroencephalogram Signal Based on OVR-CSP

          As an important component of the event related potential (ERP), late positive potential (LPP) is an ideal component for studying emotion regulation. This study was focused on processing and analysing the LPP component of the emotional cognitive reappraisal electroencephalogram (EEG) signal. Firstly, we used independent component analysis (ICA) algorithm to remove electrooculogram, electromyogram and some other artifacts based on 16 subjects' EEG data by using EGI 64-channal EEG acquisition system. Secondly, we processed feature extraction of the EEG signal at Pz electrode by using one versus the rest common spatial patterns (OVR-CSP) algorithm. Finally, the extracted LPP component was analysed both in time domain and spatial domain. The results indicated that ① From the perspective of amplitude comparison, the LPP amplitude, which was induced by cognitive reappraisal, was much higher than the amplitude under the condition of watching neural stimuli, but lower than the amplitude under condition of watching negative stimuli; ② from the perspective of time process, the difference between cognitive reappraisal and watching after processing with OVR-CSP algorithm was in the process of range between 0.3 s and 1.5 s; but the difference between cognitive reappraisal and watching after processing with averaging method was during the process between 0.3 s and 1.25 s. The results suggested that OVR-CSP algorithm could not only accurately extract the LPP component with fewer trials compared with averaging method so that it provided a better method for the follow-up study of cognitive reappraisal strategy, but also provide neurophysiological basis for cognitive reappraisal in emotional regulation.

          Release date: Export PDF Favorites Scan
        • Detection of microcalcification clusters regions in mammograms combining discriminative deep belief networks

          In order to overcome the shortcomings of high false positive rate and poor generalization in the detection of microcalcification clusters regions, this paper proposes a method combining discriminative deep belief networks (DDBNs) to automatically and quickly locate the regions of microcalcification clusters in mammograms. Firstly, the breast region was extracted and enhanced, and the enhanced breast region was segmented to overlapped sub-blocks. Then the sub-block was subjected to wavelet filtering. After that, DDBNs model for breast sub-block feature extraction and classification was constructed, and the pre-trained DDBNs was converted to deep neural networks (DNN) using a softmax classifier, and the network is fine-tuned by back propagation. Finally, the undetected mammogram was inputted to complete the location of suspicious lesions. By experimentally verifying 105 mammograms with microcalcifications from the Digital Database for Screening Mammography (DDSM), the method obtained a true positive rate of 99.45% and a false positive rate of 1.89%, and it only took about 16 s to detect a 2 888 × 4 680 image. The experimental results showed that the algorithm of this paper effectively reduced the false positive rate while ensuring a high positive rate. The detection of calcification clusters was highly consistent with expert marks, which provides a new research idea for the automatic detection of microcalcification clusters area in mammograms.

          Release date:2021-06-18 04:50 Export PDF Favorites Scan
        • Research Progress of Automatic Sleep Staging Based on Electroencephalogram Signals

          The research of sleep staging is not only a basis of diagnosing sleep related diseases but also the precondition of evaluating sleep quality, and has important clinical significance. In recent years, the research of automatic sleep staging based on computer has become a hot spot and got some achievements. The basic knowledge of sleep staging and electroencephalogram (EEG) is introduced in this paper. Then, feature extraction and pattern recognition, two key technologies for automatic sleep staging, are discussed in detail. Wavelet transform and Hilbert-Huang transform, two methods for feature extraction, are compared. Artificial neural network and support vector machine (SVM), two methods for pattern recognition are discussed. In the end, the research status of this field is summarized, and development trends of next phase are pointed out.

          Release date: Export PDF Favorites Scan
        • Using electroencephalogram for emotion recognition based on filter-bank long short-term memory networks

          Emotion plays an important role in people's cognition and communication. By analyzing electroencephalogram (EEG) signals to identify internal emotions and feedback emotional information in an active or passive way, affective brain-computer interactions can effectively promote human-computer interaction. This paper focuses on emotion recognition using EEG. We systematically evaluate the performance of state-of-the-art feature extraction and classification methods with a public-available dataset for emotion analysis using physiological signals (DEAP). The common random split method will lead to high correlation between training and testing samples. Thus, we use block-wise K fold cross validation. Moreover, we compare the accuracy of emotion recognition with different time window length. The experimental results indicate that 4 s time window is appropriate for sampling. Filter-bank long short-term memory networks (FBLSTM) using differential entropy features as input was proposed. The average accuracy of low and high in valance dimension, arousal dimension and combination of the four in valance-arousal plane is 78.8%, 78.4% and 70.3%, respectively. These results demonstrate the advantage of our emotion recognition model over the current studies in terms of classification accuracy. Our model might provide a novel method for emotion recognition in affective brain-computer interactions.

          Release date:2021-08-16 04:59 Export PDF Favorites Scan
        • Resting-state electroencephalogram classification of patients with schizophrenia or depression

          The clinical manifestations of patients with schizophrenia and patients with depression not only have a certain similarity, but also change with the patient's mood, and thus lead to misdiagnosis in clinical diagnosis. Electroencephalogram (EEG) analysis provides an important reference and objective basis for accurate differentiation and diagnosis between patients with schizophrenia and patients with depression. In order to solve the problem of misdiagnosis between patients with schizophrenia and patients with depression, and to improve the accuracy of the classification and diagnosis of these two diseases, in this study we extracted the resting-state EEG features from 100 patients with depression and 100 patients with schizophrenia, including information entropy, sample entropy and approximate entropy, statistical properties feature and relative power spectral density (rPSD) of each EEG rhythm (δ, θ, α, β). Then feature vectors were formed to classify these two types of patients using the support vector machine (SVM) and the naive Bayes (NB) classifier. Experimental results indicate that: ① The rPSD feature vector P performs the best in classification, achieving an average accuracy of 84.2% and a highest accuracy of 86.3%; ② The accuracy of SVM is obviously better than that of NB; ③ For the rPSD of each rhythm, the β rhythm performs the best with the highest accuracy of 76%; ④ Electrodes with large feature weight are mainly concentrated in the frontal lobe and parietal lobe. The results of this study indicate that the rPSD feature vector P in conjunction with SVM can effectively distinguish depression and schizophrenia, and can also play an auxiliary role in the relevant clinical diagnosis.

          Release date:2020-02-18 09:21 Export PDF Favorites Scan
        4 pages Previous 1 2 3 4 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜