Sleep apnea (SA) detection method based on traditional machine learning needs a lot of efforts in feature engineering and classifier design. We constructed a one-dimensional convolutional neural network (CNN) model, which consists in four convolution layers, four pooling layers, two full connection layers and one classification layer. The automatic feature extraction and classification were realized by the structure of the proposed CNN model. The model was verified by the whole night single-channel sleep electrocardiogram (ECG) signals of 70 subjects from the Apnea-ECG dataset. Our results showed that the accuracy of per-segment SA detection was ranged from 80.1% to 88.0%, using the input signals of single-channel ECG signal, RR interval (RRI) sequence, R peak sequence and RRI sequence + R peak sequence respectively. These results indicated that the proposed CNN model was effective and can automatically extract and classify features from the original single-channel ECG signal or its derived signal RRI and R peak sequence. When the input signals were RRI sequence + R peak sequence, the CNN model achieved the best performance. The accuracy, sensitivity and specificity of per-segment SA detection were 88.0%, 85.1% and 89.9%, respectively. And the accuracy of per-recording SA diagnosis was 100%. These findings indicated that the proposed method can effectively improve the accuracy and robustness of SA detection and outperform the methods reported in recent years. The proposed CNN model can be applied to portable screening diagnosis equipment for SA with remote server.
With the rapid development of network structure, convolutional neural networks (CNN) consolidated its position as a leading machine learning tool in the field of image analysis. Therefore, semantic segmentation based on CNN has also become a key high-level task in medical image understanding. This paper reviews the research progress on CNN-based semantic segmentation in the field of medical image. A variety of classical semantic segmentation methods are reviewed, whose contributions and significance are highlighted. On this basis, their applications in the segmentation of some major physiological and pathological anatomical structures are further summarized and discussed. Finally, the open challenges and potential development direction of semantic segmentation based on CNN in the area of medical image are discussed.
Objective To systematically evaluate the diagnostic value of artificial intelligence assisted narrow-band imaging endoscopy diagnostic system for colorectal adenomatous polyps. Methods Pubmed, Embase, Web of Science, Cochrane Library, SinoMed, China National Knowledge Infrastructure, Chongqing VIP and Wanfang databases were searched. The diagnostic trials of the artificial intelligence assisted narrow-band imaging endoscopy diagnostic system for colorectal adenomatous polyps were comprehensively searched. The search time limit was from January 1, 2000 to October 31, 2022. The included studies were evaluated according to the Quality Assessment of Diagnostic Accuracy Studies-2, and the data were meta-analysed with RevMan 5.3, Meta-Disc 1.4 and Stata 13.0 statistical softwares. Results Finally, 11 articles were included, including 2178 patients. Meta-analysis results of the artificial intelligence assisted narrow-band imaging endoscopy diagnostic system for colorectal adenomatous polyps showed that the pooled sensitivity was 0.91, the pooled specificity was 0.88, the pooled positive likelihood ratio was 7.41, the pooled negative likelihood ratio was 0.10, the pooled diagnostic odds ratio was 76.45, and the area under the summary receiver operating characteristic curve was 0.957. Among them, 5 articles reported the diagnosis of small adenomatous polyps (diameter <5 mm) by the artificial intelligence assisted narrow-band imaging endoscopy diagnostic system. The results showed that the pooled sensitivity and the pooled specificity were 0.93 and 0.91, respectively, and the area under the summary receiver operating characteristic curve was 0.971. Five articles reported the accuracy of endoscopic diagnosis for adenomatous polyps of those with insufficient experience. The results showed that the pooled sensitivity and the pooled specificity were 0.84 and 0.76, respectively. The area under the summary receiver operating characteristic curve was 0.848. Compared with the artificial intelligence assisted narrow-band imaging endoscopy diagnostic system, the difference was statistically significant (Z=1.979, P=0.048). Conclusion The artificial intelligence assisted narrow-band imaging endoscopy diagnostic system has a high diagnostic accuracy, which can significantly improve the diagnostic accuracy for colorectal adenomatous polyps of those with insufficient endoscopic experience, and can effectively compensate for the adverse impact of their lack of endoscopic experience.
Atrial fibrillation (AF) is a common arrhythmia, which can lead to thrombosis and increase the risk of a stroke or even death. In order to meet the need for a low false-negative rate (FNR) of the screening test in clinical application, a convolutional neural network with a low false-negative rate (LFNR-CNN) was proposed. Regularization coefficients were added to the cross-entropy loss function which could make the cost of positive and negative samples different, and the penalty for false negatives could be increased during network training. The inter-patient clinical database of 21 077 patients (CD-21077) collected from the large general hospital was used to verify the effectiveness of the proposed method. For the convolutional neural network (CNN) with the same structure, the improved loss function could reduce the FNR from 2.22% to 0.97% compared with the traditional cross-entropy loss function. The selected regularization coefficient could increase the sensitivity (SE) from 97.78% to 98.35%, and the accuracy (ACC) was 96.62%, which was an increase from 96.49%. The proposed algorithm can reduce the FNR without losing ACC, and reduce the possibility of missed diagnosis to avoid missing the best treatment period. Meanwhile, it provides a universal loss function for the clinical auxiliary diagnosis of other diseases.
Auscultation of heart sounds is an important method for the diagnosis of heart conditions. For most people, the audible component of heart sound are the first heart sound (S1) and the second heart sound (S2). Different diseases usually generate murmurs at different stages in a cardiac cycle. Segmenting the heart sounds precisely is the prerequisite for diagnosis. S1 and S2 emerges at the beginning of systole and diastole, respectively. Locating S1 and S2 accurately is beneficial for the segmentation of heart sounds. This paper proposed a method to classify the S1 and S2 based on their properties, and did not take use of the duration of systole and diastole. S1 and S2 in the training dataset were transformed to spectra by short-time Fourier transform and be feed to the two-stream convolutional neural network. The classification accuracy of the test dataset was as high as 91.135%. The highest sensitivity and specificity were 91.156% and 92.074%, respectively. Extracting the features of the input signals artificially can be avoid with the method proposed in this article. The calculation is not complicated, which makes this method effective for distinguishing S1 and S2 in real time.
Inferior myocardial infarction is an acute ischemic heart disease with high mortality, which is easy to induce life-threatening complications such as arrhythmia, heart failure and cardiogenic shock. Therefore, it is of great clinical value to carry out accurate and efficient early diagnosis of inferior myocardial infarction. Electrocardiogram is the most sensitive means for early diagnosis of inferior myocardial infarction. This paper proposes a method for detecting inferior myocardial infarction based on densely connected convolutional neural network. The method uses the original electrocardiogram (ECG) signals of serially connected Ⅱ, Ⅲ and aVF leads as the input of the model and extracts the robust features of the ECG signals by using the scale invariance of the convolutional layers. The characteristic transmission of ECG signals is enhanced by the dense connectivity between different layers, so that the network can automatically learn the effective features with strong robustness and high recognition, so as to achieve accurate detection of inferior myocardial infarction. The Physikalisch Technische Bundesanstalt diagnosis public ECG database was used for verification. The accuracy, sensitivity and specificity of the model reached 99.95%, 100% and 99.90%, respectively. The accuracy, sensitivity and specificity of the model are also over 99% even though the noise exists. Based on the results of this study, it is expected that the method can be introduced in the clinical environment to help doctors quickly diagnose inferior myocardial infarction in the future.
Alzheimer's disease (AD) is a typical neurodegenerative disease, which is clinically manifested as amnesia, loss of language ability and self-care ability, and so on. So far, the cause of the disease has still been unclear and the course of the disease is irreversible, and there has been no cure for the disease yet. Hence, early prognosis of AD is important for the development of new drugs and measures to slow the progression of the disease. Mild cognitive impairment (MCI) is a state between AD and healthy controls (HC). Studies have shown that patients with MCI are more likely to develop AD than those without MCI. Therefore, accurate screening of MCI patients has become one of the research hotspots of early prognosis of AD. With the rapid development of neuroimaging techniques and deep learning, more and more researchers employ deep learning methods to analyze brain neuroimaging images, such as magnetic resonance imaging (MRI), for early prognosis of AD. Hence, in this paper, a three-dimensional multi-slice classifiers ensemble based on convolutional neural network (CNN) and ensemble learning for early prognosis of AD has been proposed. Compared with the CNN classification model based on a single slice, the proposed classifiers ensemble based on multiple two-dimensional slices from three dimensions could use more effective information contained in MRI to improve classification accuracy and stability in a parallel computing mode.
With the development of image-guided surgery and radiotherapy, the demand for medical image registration is stronger and the challenge is greater. In recent years, deep learning, especially deep convolution neural networks, has made excellent achievements in medical image processing, and its research in registration has developed rapidly. In this paper, the research progress of medical image registration based on deep learning at home and abroad is reviewed according to the category of technical methods, which include similarity measurement with an iterative optimization strategy, direct estimation of transform parameters, etc. Then, the challenge of deep learning in medical image registration is analyzed, and the possible solutions and open research are proposed.
The pathogenesis of Alzheimer's disease (AD), a common neurodegenerative disease, is still unknown. It is difficult to determine the atrophy areas, especially for patients with mild cognitive impairment (MCI) at different stages of AD, which results in a low diagnostic rate. Therefore, an early diagnosis model of AD based on 3-dimensional convolutional neural network (3DCNN) and genetic algorithm (GA) was proposed. Firstly, the 3DCNN was used to train a base classifier for each region of interest (ROI). And then, the optimal combination of the base classifiers was determined with the GA. Finally, the ensemble consisting of the chosen base classifiers was employed to make a diagnosis for a patient and the brain regions with significant classification capability were decided. The experimental results showed that the classification accuracy was 88.6% for AD vs. normal control (NC), 88.1% for MCI patients who will convert to AD (MCIc) vs. NC, and 71.3% for MCI patients who will not convert to AD (MCInc) vs. MCIc. In addition, with the statistical analysis of the behavioral domains corresponding to ROIs (i.e. brain regions), besides left hippocampus, medial and lateral amygdala, and left para-hippocampal gyrus, anterior superior temporal sulcus of middle temporal gyrus and dorsal area 23 of cingulate gyrus were also found with GA. It is concluded that the functions of the selected brain regions mainly are relevant to emotions, memory, cognition and the like, which is basically consistent with the symptoms of indifference, memory losses, mobility decreases and cognitive declines in AD patients. All of these show that the proposed method is effective.
Focus on the inconsistency of the shape, location and size of brain glioma, a dual-channel 3-dimensional (3D) densely connected network is proposed to automatically segment brain glioma tumor on magnetic resonance images. Our method is based on a 3D convolutional neural network frame, and two convolution kernel sizes are adopted in each channel to extract multi-scale features in different scales of receptive fields. Then we construct two densely connected blocks in each pathway for feature learning and transmission. Finally, the concatenation of two pathway features was sent to classification layer to classify central region voxels to segment brain tumor automatically. We train and test our model on open brain tumor segmentation challenge dataset, and we also compared our results with other models. Experimental results show that our algorithm can segment different tumor lesions more accurately. It has important application value in the clinical diagnosis and treatment of brain tumor diseases.