• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "Wearable" 18 results
        • Exploratory study on quantitative analysis of nocturnal breathing patterns in patients with acute heart failure based on wearable devices

          Patients with acute heart failure (AHF) often experience dyspnea, and monitoring and quantifying their breathing patterns can provide reference information for disease and prognosis assessment. In this study, 39 AHF patients and 24 healthy subjects were included. Nighttime chest-abdominal respiratory signals were collected using wearable devices, and the differences in nocturnal breathing patterns between the two groups were quantitatively analyzed. Compared with the healthy group, the AHF group showed a higher mean breathing rate (BR_mean) [(21.03 ± 3.84) beat/min vs. (15.95 ± 3.08) beat/min, P < 0.001], and larger R_RSBI_cv [70.96% (54.34%–104.28)% vs. 58.48% (45.34%–65.95)%, P = 0.005], greater AB_ratio_cv [(22.52 ± 7.14)% vs. (17.10 ± 6.83)%, P = 0.004], and smaller SampEn (0.67 ± 0.37 vs. 1.01 ± 0.29, P < 0.001). Additionally, the mean inspiratory time (TI_mean) and expiration time (TE_mean) were shorter, TI_cv and TE_cv were greater. Furthermore, the LBI_cv was greater, while SD1 and SD2 on the Poincare plot were larger in the AHF group, all of which showed statistically significant differences. Logistic regression calibration revealed that the TI_mean reduction was a risk factor for AHF. The BR_ mean demonstrated the strongest ability to distinguish between the two groups, with an area under the curve (AUC) of 0.846. Parameters such as breathing period, amplitude, coordination, and nonlinear parameters effectively quantify abnormal breathing patterns in AHF patients. Specifically, the reduction in TI_mean serves as a risk factor for AHF, while the BR_mean distinguishes between the two groups. These findings have the potential to provide new information for the assessment of AHF patients.

          Release date:2023-12-21 03:53 Export PDF Favorites Scan
        • Effects of ankle exoskeleton assistance during human walking on lower limb muscle contractions and coordination patterns

          Lower limb ankle exoskeletons have been used to improve walking efficiency and assist the elderly and patients with motor dysfunction in daily activities or rehabilitation training, while the assistance patterns may influence the wearer’s lower limb muscle activities and coordination patterns. In this paper, we aim to evaluate the effects of different ankle exoskeleton assistance patterns on wearer’s lower limb muscle activities and coordination patterns. A tethered ankle exoskeleton with nine assistance patterns that combined with differenet actuation timing values and torque magnitude levels was used to assist human walking. Lower limb muscle surface electromyography signals were collected from 7 participants walking on a treadmill at a speed of 1.25 m/s. Results showed that the soleus muscle activities were significantly reduced during assisted walking. In one assistance pattern with peak time in 49% of stride and peak torque at 0.7 N·m/kg, the soleus muscle activity was decreased by (38.5 ± 10.8)%. Compared with actuation timing, the assistance torque magnitude had a more significant influence on soleus muscle activity. In all assistance patterns, the eight lower limb muscle activities could be decomposed to five basic muscle synergies. The muscle synergies changed little under assistance with appropriate actuation timing and torque magnitude. Besides, co-contraction indexs of soleus and tibialis anterior, rectus femoris and semitendinosus under exoskeleton assistance were higher than normal walking. Our results are expected to help to understand how healthy wearers adjust their neuromuscular control mechanisms to adapt to different exoskeleton assistance patterns, and provide reference to select appropriate assistance to improve walking efficiency.

          Release date:2022-04-24 01:17 Export PDF Favorites Scan
        • Preparation and application of conductive fiber coated with liquid metal

          Flexible conductive fibers have been widely applied in wearable flexible sensing. However, exposed wearable flexible sensors based on liquid metal (LM) are prone to abrasion and significant conductivity degradation. This study presented a high-sensitivity LM conductive fiber with integration of strain sensing, electrical heating, and thermochromic capabilities, which was fabricated by coating eutectic gallium-indium (EGaIn) onto spandex fibers modified with waterborne polyurethane (WPU), followed by thermal curing to form a protective polyurethane sheath. This fiber, designated as Spandex/WPU/EGaIn/Polyurethane (SWEP), exhibits a four-layer coaxial structure: spandex core, WPU modification layer, LM conductive layer, and polyurethane protective sheath. The SWEP fiber had a diameter of (458.3 ± 10.4) μm, linear density of (2.37 ± 0.15) g/m, and uniform EGaIn coating. The fiber had excellent conductivity with an average value of (3 716.9 ± 594.2) S/m. The strain sensing performance was particularly noteworthy. A 5 cm × 5 cm woven fabric was fabricated using polyester warp yarns and SWEP weft yarns. The fabric exhibited satisfactory moisture permeability [(536.06 ± 33.15) g/(m2·h)] and maintained stable thermochromic performance after repeated heating cycles. This advanced conductive fiber development is expected to significantly promote LM applications in wearable electronics and smart textile systems.

          Release date:2025-08-19 11:47 Export PDF Favorites Scan
        • A gait signal acquisition and parameter characterization method based on foot pressure detection combined with Azure Kinect system

          The gait acquisition system can be used for gait analysis. The traditional wearable gait acquisition system will lead to large errors in gait parameters due to different wearing positions of sensors. The gait acquisition system based on marker method is expensive and needs to be used by combining with the force measurement system under the guidance of rehabilitation doctors. Due to the complex operation, it is inconvenient for clinical application. In this paper, a gait signal acquisition system that combines foot pressure detection and Azure Kinect system is designed. Fifteen subjects are organized to participate in gait test, and relevant data are collected. The calculation method of gait spatiotemporal parameters and joint angle parameters is proposed, and the consistency analysis and error analysis of the gait parameters of proposed system and camera marking method are carried out. The results show that the parameters obtained by the two systems have good consistency (Pearson correlation coefficient r ≥ 0.9, P < 0.05) and have small error (root mean square error of gait parameters is less than 0.1, root mean square error of joint angle parameters is less than 6). In conclusion, the gait acquisition system and its parameter extraction method proposed in this paper can provide reliable data acquisition results as a theoretical basis for gait feature analysis in clinical medicine.

          Release date:2023-06-25 02:49 Export PDF Favorites Scan
        • Development of flexible multi-phase barium titanate piezoelectric sensor for physiological health and action behavior monitoring

          Self-powered wearable piezoelectric sensing devices demand flexibility and high voltage electrical properties to meet personalized health and safety management needs. Aiming at the characteristics of piezoceramics with high piezoelectricity and low flexibility, this study designs a high-performance piezoelectric sensor based on multi-phase barium titanate (BTO) flexible piezoceramic film, namely multi-phase BTO sensor. The substrate-less self-supported multi-phase BTO films had excellent flexibility and could be bent 180° at a thickness of 33 μm, and exhibited good bending fatigue resistance in 1 × 104 bending cycles at a thickness of 5 μm. The prepared multi-phase BTO sensor could maintain good piezoelectric stability after 1.2 × 104 piezoelectric cycle tests. Based on the flexibility, high piezoelectricity, wearability, portability and battery-free self-powered characteristics of this sensor, the developed smart mask could monitor the respiratory signals of different frequencies and amplitudes in real time. In addition, by mounting the sensor on the hand or shoulder, different gestures and arm movements could also be detected. In summary, the multi-phase BTO sensor developed in this paper is expected to develop convenient and efficient wearable sensing devices for physiological health and behavioral activity monitoring applications.

          Release date:2024-06-21 05:13 Export PDF Favorites Scan
        • Application status and future trend analysis of wearable devices in the field of clinical nursing

          Wearable devices, as an important component of digital health, are gradually penetrating into the clinical nursing field. This paper explores the current applications of wearable devices in the field of clinical nursing, with a focus on their significant roles in real-time monitoring of physiological parameters, disease management, functional rehabilitation exercises. Additionally, it analyzes the challenges these devices face, such as the need for standardized development, data security and privacy protection, and cost-benefit analysis. This paper also proposes measures to address these challenges, including enhancing policy formulation, promoting standardization, and fostering technological innovation, with the aim of providing valuable insights for the advancement of high-quality clinical nursing practices.

          Release date:2024-11-27 02:31 Export PDF Favorites Scan
        • Application and progress of wearable devices in epilepsy monitoring, prediction, and treatment

          Epilepsy is a complex and widespread neurological disorder that has become a global public health issue. In recent years, significant progress has been made in the use of wearable devices for seizure monitoring, prediction, and treatment. This paper reviewed the applications of invasive and non-invasive wearable devices in seizure monitoring, such as subcutaneous EEG, ear-EEG, and multimodal sensors, highlighting their advantages in improving the accuracy of seizure recording. It also discussed the latest advances in the prediction and treatment of seizure using wearable devices.

          Release date:2024-08-23 04:11 Export PDF Favorites Scan
        • A design and evaluation of wearable p300 brain-computer interface system based on Hololens2

          Patients with amyotrophic lateral sclerosis ( ALS ) often have difficulty in expressing their intentions through language and behavior, which prevents them from communicating properly with the outside world and seriously affects their quality of life. The brain-computer interface (BCI) has received much attention as an aid for ALS patients to communicate with the outside world, but the heavy device causes inconvenience to patients in the application process. To improve the portability of the BCI system, this paper proposed a wearable P300-speller brain-computer interface system based on the augmented reality (MR-BCI). This system used Hololens2 augmented reality device to present the paradigm, an OpenBCI device to capture EEG signals, and Jetson Nano embedded computer to process the data. Meanwhile, to optimize the system’s performance for character recognition, this paper proposed a convolutional neural network classification method with low computational complexity applied to the embedded system for real-time classification. The results showed that compared with the P300-speller brain-computer interface system based on the computer screen (CS-BCI), MR-BCI induced an increase in the amplitude of the P300 component, an increase in accuracy of 1.7% and 1.4% in offline and online experiments, respectively, and an increase in the information transfer rate of 0.7 bit/min. The MR-BCI proposed in this paper achieves a wearable BCI system based on guaranteed system performance. It has a positive effect on the realization of the clinical application of BCI.

          Release date: Export PDF Favorites Scan
        • Performance evaluation of a wearable steady-state visual evoked potential based brain-computer interface in real-life scenario

          Brain-computer interface (BCI) has high application value in the field of healthcare. However, in practical clinical applications, convenience and system performance should be considered in the use of BCI. Wearable BCIs are generally with high convenience, but their performance in real-life scenario needs to be evaluated. This study proposed a wearable steady-state visual evoked potential (SSVEP)-based BCI system equipped with a small-sized electroencephalogram (EEG) collector and a high-performance training-free decoding algorithm. Ten healthy subjects participated in the test of BCI system under simplified experimental preparation. The results showed that the average classification accuracy of this BCI was 94.10% for 40 targets, and there was no significant difference compared to the dataset collected under the laboratory condition. The system achieved a maximum information transfer rate (ITR) of 115.25 bit/min with 8-channel signal and 98.49 bit/min with 4-channel signal, indicating that the 4-channel solution can be used as an option for the few-channel BCI. Overall, this wearable SSVEP-BCI can achieve good performance in real-life scenario, which helps to promote BCI technology in clinical practice.

          Release date:2025-06-23 04:09 Export PDF Favorites Scan
        • Artificial intelligence in wearable electrocardiogram monitoring

          Electrocardiogram (ECG) monitoring owns important clinical value in diagnosis, prevention and rehabilitation of cardiovascular disease (CVD). With the rapid development of Internet of Things (IoT), big data, cloud computing, artificial intelligence (AI) and other advanced technologies, wearable ECG is playing an increasingly important role. With the aging process of the population, it is more and more urgent to upgrade the diagnostic mode of CVD. Using AI technology to assist the clinical analysis of long-term ECGs, and thus to improve the ability of early detection and prediction of CVD has become an important direction. Intelligent wearable ECG monitoring needs the collaboration between edge and cloud computing. Meanwhile, the clarity of medical scene is conducive for the precise implementation of wearable ECG monitoring. This paper first summarized the progress of AI-related ECG studies and the current technical orientation. Then three cases were depicted to illustrate how the AI in wearable ECG cooperate with the clinic. Finally, we demonstrated the two core issues—the reliability and worth of AI-related ECG technology and prospected the future opportunities and challenges.

          Release date:2023-12-21 03:53 Export PDF Favorites Scan
        2 pages Previous 1 2 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜