Objective To explore the effect of the platelet-rich plasma (PRP) on proliferation and osteogenic differentiation of the bone marrow mesenchymal stem cells (MSCs) in China goat in vitro. Methods MSCs from the bone marrow of China goat were cultured. The third passage of MSCs were treated with PRP in the PRP group (the experimental group), but the cells were cultured with only the fetal calf serum (FCS) in the FCS group (the control group). The morphology and proliferation of the cells were observed by an inverted phase contrast microscope. The effect of PRP on proliferation of MSCs was examined by the MTT assay at 2,4,6 and 8 days. Furthermore, MSCs were cultured withdexamethasone(DEX)or PRP; alkaline phosphatase (ALP) and the calcium stainingwere used to evaluate the effect of DEX or PRP on osteogenic differatiation of MSCs at 18 days. The results from the PRP group were compared with those from the FCS group. Results The time for the MSCs confluence in the PRP group was earlier than that in the FCS group when observed under the inverted phase contrast microscope. The MTT assay showed that at 2, 4, 6 and 8 days the mean absorbance values were 0.252±0.026, 0.747±0.042, 1.173±0.067, and 1.242±0.056 in the PRP group, but 0.137±0.019, 0.436±0.052, 0.939±0.036, and 1.105±0.070 in the FCS group. The mean absorbance value was significantly higher in the PRP group than in the FCS group at each observation time (P<0.01). Compared with the FCS group, the positive-ALP cells and the calcium deposition were decreased in the PRP group; however, DEX could increase boththe number of the positiveALP cells and the calcium deposition. Conclusion The PRP can promote proliferation of the MSCs of China goats in vitro but inhibit osteogenic differentiation.
OBJECTIVE: To isolate and characterize mesenchymal stem cells (MSCs) derived from bone marrow of Banna minipig inbred line (BMI). METHODS: BMI-MSCs was isolated from bone marrow by density gradient centrifugation and cultured in DMEM (containing 15% bovine serum) at 37 degrees C with humidified 5% CO2. These cultured stem cells were characterized in clonal growth, expression of specific markers and capability of differentiation. RESULTS: Mesenchymal stem cells were proliferative and could be expanded rapidly in vitro. Clonal growth of these cells can be observed when small amount of cells was inoculated. These cells were SH2, SH3, SH4, SB10 and SB21 positive. And it was proved that these cells possess osteo-differentiation ability, up-regulated alkaline phosphatase expression and calcium secretion after osteosupplement was added into the media for several days. CONCLUSION: Mesenchymal stem cells derived from bone marrow of BMI possess the general characters of stem cell.
Objective To investigate the possibility of constructing eukaryoticexpression vector for human angiopoietin 1(hAng-1),transfecting it to bonemarrow mesenchymal stem cells (MSCs) so as to repair bone defect. Methods The eukaryotic expression vector pcDNA3-hAng-1 was constructed by recombinant DNA technique, transfected into MSCs by liposome DOTAP, and selected with G418. The hAng-1 expression of mRNA and protein was detected by reverse transcript-PCR and Western Blot. Results After the recombinant eukaryotic expressionvector for hAng-1 was digested with Xho-I and BamH-I, electrophoresis revealed 1.4 kb fragment for hAng-1 gene and 5.4 kb fragment for pcDNA3 vector. In the transfected MSCs, the mRNA and protein expression of hAng-1 gene were detected with reverse transcriptPCR and Western Blot. Conclusion The constructed eukaryotic expression vector hAng-1 could be expressed in the transfected MSCs, thus to provide the basis for bone repair with tissue engineering.
Objective To evaluate the effect of nano-hydroxyapatit e collagen (nHAC) bone and marrow mesenchymal stem cells (MSCs) on the treatment of rabbit osteonecrosis of the femoral head (ONFH) defect. Methods From June to October 2004, animal models of ONFH defect were established i n 45 New Zealand rabbits. They were divided into 3 groups randomly:In group A, as the control group, defect was not filled with any implants; In group B with nHAC; In group C with nHAC+MSC. Imaging and histological observation were made 4, 8, 12 weeks after operation. Results group C had a better o steogenesis ability than group B and group A. group B had a better osteogenesis ability than group A. Obvious new bones and osteogenesis were observed in group C 4 weeks after operation. The defect areas in group C were almost repaired 12 weeks after operation. Conclusion nHAC has a better effect of o steoconduction and it is a superior material for repairing bone defect of ONFH a nd of great value in treating ONFH when compounded with MSCs.
Objective To study the influence of different mechanical environments on repair cartilage defect with marrow mesenchymal stem cells as seed cells. Methods The rabbit marrow mesenchymal stem cells were isolated and cultured. The cartilage defects were repaired by autologous tissue engineered cartilage with the marrow mesenchymal stem cells as seed cells. Fifteen rabbits with cartilage defect were divided into 3 groups: dislocation group with cell-free scaffold(controlgroup), dislocation group with cartilaginous construct and normal mechanical environment group with cartilaginous construct. The repaired tissue was harvested and examined 6 weeks postoperatively. Results The repair tissue in normal mechanical environment group with cartilaginous construct showed cartilage-like tissue in superficial layer and subchondral bone tissue in deep layer 6 weeks postoperatively. The defect was filled with bone tissue in dislocation group with cartilaginous construct 6 weeks postoperatively. The surrounding normal cartilage tissue showed vascular invasion from subchondral area and the concomitant thinningof the normal cartilage layer. The cartilaginous construct left in the femoral trochlea groove formed hyaline cartilage-like tissue. The defect was repaired byfibrous tissue in control group. Conclusion The repaired tissue by tissue engineered cartilage with marrow mesenchymal stem cells as seed cells showed the best result in normal mechanical environment group, which indicates that it will be essential for the formation and maintenance of tissue engineered cartilage to keep the normal mechanical stress stimulus.
Objective To study the differenation of adult marrow mesenchymal stem cells(MSCs) into vascular endothelial cells in vitro and to explore inducing conditions. Methods MSCs were isolated from adult marrow mononuclear cells by attaching growth. MSCs were divided into 4 groups to induce: the cells seeded at a density of 5×103/cm2 in 2% and 15% FCS LDMEM respectively (group1 and group 2), at a density of 5×104/cm2 in 2% and 15% FCS LDMEM respectively (group 3 and group 4); vascular endothelial growth factor(VEGF) supplemented with Bovine pituitary extract was used to induce the cell differentiation. The differentiated cells were identified by measuring surfacemarks (CD34, VEGFR2, CD31 and vWF ) on the 14th day and 21st day and performed angiogenesis in vitroon the 21st day.The cell proliferation index(PI)of different inducing conditions were measured. Results After induced in VEGF supplemented with Bovine pituitary extract, the cells of group 3 expressed the surface marks CD34, VEGFR-2, CD31 and vWF on the 14th day, the positive rates were 8.5%, 12.0%, 40.0% and 30.0% respectively, and on the 21st day the positive ratesof CD34 and VEGFR2 increased to 15.5% and 20.0%, while the other groups did not express these marks; the induced cells of group 3 showed low proliferating state(PI was 10.4%) and formed capillary-like structure in semisolid medium. Conclusion Adult MSCs can differentiate into vascular endothelial cellsafter induced by VEGF and Bovine pituitary extract at high cell densities and low proliferatingconditions,suggesting that adult MSCs will be ideal seed cells forthe therapeutic neovascularization and tissue engineering.
Objective To observe effects of the core binding factor α1 (Cbfα1) in its promoting differentiation of the rabbit marrow mesenchym al stem cells (MSCs) into osteoblasts. Methods The rabbit marrow MSCs were isolated and cult ured in vitro and were divided into 3 groups. In the control group, the marr ow MSCs were cultured by DMEM; in the single inducement group, they were cultured by the condition medium (DMEM, 10% fetal bovine serum, dexamethasone 10 mmol/L, vitamin C 50 mg/L, and βGP 10 mmol/L); and in the experimental group , the ywere transfected with AdEasy1/Cbfα1,and then were cultured by the condition m edium. The alkaline phosphatase(ALP) activity and the experission of osteocalcin as the osteoblast markers were measured with the chemohistological and immunohi stochemical methods at 3 days,1,2,3,and 4 weeks after inducement. Results More than 90% MSCs were grown well in vitro. The GFP was positive in MSCs after their being transfectived with AdEasy1/Cbfα1. The ALP activity and the experission of osteocalcin were significantly upregulated in the transfection group compared with those in the single inducement group and the control group at 1, 2, 3, and 4 weeks (Plt;0.05).The mineralized node began to appear at 2 weeks in the experiment al group and the single induction group, but did not appear in control group. Conclusion Cbfα1 can obviously promote differentiation of the rabb it marrow mesenchymal stem cells into the osteoblasts.
Objective To investigate the effect of the synthetic bone morphogenetic protein 2 (BMP-2)derived peptide on the osteogenic induction in the marrow mesenchymal stem cells (MSCs)and to evaluate the osteoinductivity and dosedependence of the BMP-2 derived peptide in vitro. Methods MSCs of 4-week old Wistar rats were separated and cultured. In the 3rd passage, the conditional culture medium was changed, in which the BMP-2-derived peptide in the following doses was added: 300,200, 100, 50, and 0 μg/ml, respectively (Groups A-E). The activity of alkaline phosphatase (ALP)and the amount of calciumdeposition were meassured at 5,10,15 and 20 days during the culture with the conditional culture medium. The real-time fluorescent quantitative polymerase chain reaction (FQ-PCR) was performed to measure the mRNA expressions of collagen type Ⅰ, osteopontin (OPN), and osteocalcin(OCN)and to measure the osteoinductivity of the BMP-2-derived peptide in the different concentrations.Results Under the inverted phase contrast microscope, MSCs cultured in the conditional culture medium for 3-4 days were changed in shape, from long fusiform to short fusiform or polygon. As the concentration of the BMP-2-derived peptide increased, the time for MSCs to change into the osteoblasts decreased. There was a significantly greater level of the ALP activity and amount of the calcium deposition in Groups A and B than in the other groups(Plt;0.05). However,there was no significant difference between Group A and Group B (Pgt;0.05). Theresult of FQPCR showed that after MSCs were cultured in the different doses of theconditional culture medium for 14 days, the mRNA expressions of collagen type Ⅰ, OPN andOCN were at higher levels. An increasing order in the level of the cycle threshold (Ct) was found in the following groups: Agt;Bgt;Cgt;D. Almost no expression was found in Group E. The Ct levels were significantly greater in Groups A and B thanin Groups C and D(Plt;0.05). However, there was no significant difference between Group A and Group B (Pgt;0.05).ConclusionThe BMP-2-derived peptide can greatly promote differentiation of MSCs into the osteoblasts, the promotion of osteogenesis has a dosedependent pattern, and the best inducing dosage is 200 μg/ml.
Objective To optimize the in vitro culture system of C57/BL6 marrow mesenchymal stem cells (MSCs) and to investigate the effect of alcohol and acetaldehyde on MSCs. Methods The MSCs were isolated from the femur marrow of C57/BL6 mice and were cultured in the optimized system, so that highlypurified MSCs were harvested and identified by immunohistochemistry. Then, MSCs were cultured in the medium containing alcohol or its metabolic product acetaldehyde, with the following concentration groups: alcohol 5.7,17.0,50.0,100.0 and 150.0 mmol/L; acetaldehyde 4.5, 0.9, 0.18, 0.036, 0.007 2, 0.001 44 , 0.000 28 mmol/L. MSCs were cultured with α-MEM as the control group. After 3 days, their proliferation activity was measured by the MTT method. Results MSCs within 6 passages had a good stability and a high proliferation activity. They were identified to express CD90 but no CD34. The MTT assay showed that alcohol at the concentration greater than 100.0 mmol/L and acetaldehyde at the concentration greater than 4.5 mmol/L could inhibit proliferation of MSCs(P<0.05) . But the proliferation activity might rise with an increase in the acetaldehyde concentration smaller than 0.18 mmol/L(P<0.05) . Conclusion Theoptimized culture system can effectively isolate and culture MSCs. Both alcoholand acetaldehyde can inhibit proliferation of MSCs but toxicity of acetaldehydeis more serious.
Objective To study the effect of transforming growth factor β1(TGF-β1) and insulin-like growth factor 1(IGF-1) during the induction course from marrow mesenchymal stem cells (MSCs) to chondrocytes and to observe the effect of cell density on cell induction. Methods Differential time adherent methods were used to purify MSCs obtained from the bone marrow of Kunming mice. MSCs were cultured under special conditionsto induce themto differentiate into chondrocytes. Toluidine blue staining and immunofluoresence were used to identify those induced chondrocytes.TGF-β1 and IGF-1 were used individually or in combination under two different culture patterns: pellet culture and monolayer culture. According to different growth factors, experiment included 3 experimental groups(TGF-β1+IGF-1 group,10 ng/mland 50 ng/ml respectively;TGF-β1 group, 10 ng/ml; and IGF-1 group, 50 ng/ml) and control group(without growth factor). In TGF-β1+IGF-1 group, toluidine blue staining and immunofluoresence staining were carried out at 14 days and 21 days. The effect ofTGF-β1 and IGF-1 on the expression of collagen Ⅱgene was detected by RT-PCR at 7, 14 and 21 days of induction; the expressionsof collagen Ⅱ were compared between two culture patterns. Results In TGF-β1+IGF-1 group, the histological examination and immunofluoresence showed that those inducted chondyocytes could express collagen Ⅱ at 14 days. The gel electrophoresis results showed that the fragment of collagen Ⅱ gene was seen in TGF-β1+IGF-1 group andTGF-β1 group and that no fragment ofcollagen Ⅱ gene was seen in IGF-1 group and control group. The expression of collagen Ⅱ gene was ber in TGF-β1+ IGF-1 group than inTGF-β1 group, showing significant difference(Plt;0.05). Cells expressed more collagen Ⅱ under pellet culture than under monolayer culture. Conclusion IGF-1 could enhance the effect ofTGF-β1 during the induction course from MSCs to chondrocytes. A certain extent of high cell density is more effective for MSCs to differentiate into chondrocytes.