• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "Hematopoietic stem cells" 2 results
        • ROLE OF OSTEOBLASTS IN THE HEMATOPOIETIC MICROENVIRONMENT OF BONE MARROW AND REGULATORY PATHWAYS AND MECHANISMS

          Objective To review the research progress of osteoblasts in the hematopoietic microenvironment of bone marrow and regulatory pathways and mechanisms. Methods The advances in the osteoblasts as crucial components for hematopoietic microenvironment in bone marrow, regulation to osteoblasts and hematopoietic stem cells(HSCs), and correlative singal pathways and mechanisms were introduced based on the recent related literature. Results Evidence indicates that osteoblasts are crucial components of the hematopoietic microenvironments in adult bone marrow. The osteoblasts maintainthe quiescence of primitive HSCs by the signaling receptorsligands, secreted cell factors and celladhesion molecules and by regulating other cells in the niche. The quiescent primitive HSCs persist stem cell characteristic which has unlimited selfrenewal and multipotent differentiation potential. Conclusion The further understanding of the relationship between osteoblasts and hematopoietic microenvironment should lead to development of new strategies directed toward clinical therapeutics of HSCs transplantation.

          Release date:2016-09-01 09:22 Export PDF Favorites Scan
        • RESEARCH PROGRESS OF OSTEOCLASTS FUNCTION BEYOND BONE RESORPTION

          ObjectiveTo review the osteoclasts (OC) function beyond bone resorption. MethodsThe related literature on OC function beyond bone resorption was reviewed, analyzed, and summarized. ResultsOC control the bone formation through releasing of matrix-derived growth factors, bidirectional cell-to-cell signals, and secreting OC-coupling factors, and play an important role in the niche formation, hematopoietic stem cells mobilization, and maintenance of its quantity and function;besides, OCs also regulate angiogenesis. ConclusionThese discoveries greatly enrich the current knowledge of OC function and open up an all-new research domain. However, the exact regulatory mechanism of OC affecting the hematopoiesis is still lack in-depth understood. Additionally, it remains to be elucidated how OC-coupling factors act on osteoblast lineage differentiation and how OC-induced angiogenesis participates in physiological and pathological processes. Unclosing the underlying mechanisms will facilitate providing scientific therapeutic strategies for treatment of many OC-related diseases.

          Release date: Export PDF Favorites Scan
        1 pages Previous 1 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜