Objective To study the effects of dermal template on the biological behaviors of fibroblasts during wound healing. Methods A total of 120 rats were made fullthickness wound modes on the dorsum and divided into 4 groups,in group 1, the wounds were allowed to heal by contraction(ConT);in group2, the wounds covered with fullthickness skin grafts( FTSG); in group 3, the wounds were with split thickness skin grafts (STSG); and ingroup 4, the wounds were covered by dermal regeneration template with overlying thin splitthickness autograft (ADMT).The specimens were obtained at one week, two weeks, four weeks, six weeks,and twelve weeks respectively. The expressions of α smooth muscle actin(αSMA,characteristic of MFB),fibronectin(FN),integrin α2,β1 and transforming growth factor β1(TGF-β1) were examined by immunohistochemical analysis. Results Positive expression of α-SMA、FN、integrin α2β1 and TGF-β1 in ADMT groups was significantly lower than that in STSG group and ConT group, but higher than that in FTSG group(P<0.05). Conclusion Dermal regeneration template can inhibit the transformation of FB to MFB and restrain the expressionof FN,integrin α2,β1,and TGF-β1 in fibroblasts which might reduce thepossibility of hypertrophyic scaring, and improve wound healing.
Taking Wistar rats and pigs as models, the basic fibroblast growth factor (bFGF) was studied on wound healing. Five rats and five pigs were used in the experiment. Each rat had 2 roundshapedwound (1.8cm in diameter) and each pig had 4 wounds of the same size as that ofthe rat. One wound of each rat and 2 wound of each pig were dressed with bFGF saline (60U/cm2). While the other wounds of the rats and pigs were dressed with normal saline as control. The wounds treated with bFGF were completely covered with granulation tissue on the 7th day after injury, and in 14 days the wounds were almost completely covered by epithelium. The bFGF would enhance the growth of theepithelial cells, reepithelization of the wound and the tensile strength of thetissue. It was concluded that the bFGF could promote skin regeneration, whichmight be the direct action of bFGF on the bFGF receptors in the basic cells of skin.
ObjectiveTo investigate the expression and relation of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in rats with diabetic retinopathy.MethodFifty-five Wistar rats were randomly divided into the control group (10 rats), and 1, 3, and 5-month-diabetes group (15 rats in each diabetes group), and the diabetic models were set up. The expressions of VEGF and bFGF were detected by situ hybridation and immunohistochemistry on retinal paraffin sections.ResultsThe results of situ hybridation showed that expression of bFGF was found in 3-month-deatbtes group with the percentage of 77.8%, and 88.9% in 5-month-deatbtes group; the positive expression of VEGF was not found in 3-month-deatbtes group but in 5-month-deatbtes group with the percentage of 66.7%. Immunohistochemistry indicated that the positive expression of bFGF started in 3-month-deatbtes group with the percentage of 55.6%, and 88.9% in 5-month-deatbtes group; the percentage of the expression of VEGF was 33.3% in 3-month-deatbtes group and 88.9% in 5-month-deatbtes group.ConclusionThe expression of VEGF occurs after the expression of bFGF in rats with DR.(Chin J Ocul Fundus Dis, 2005,21:37-40)
Objective To evaluate the effects of cryopreserved cultured allogenic dermal fibroblasts on angiogenesis and fibroplasia while artificial dermis grafting by spraying the cells on the graft bed.Methods Full thickness skin defect was made on the back of Wistar rat, fibroblasts mixed into fibrin glue (fibroblast group) and same amount fibrin glue (control group) were sprayed separately between the wound bed and artificial dermis in cell density of 1.0×105 cells/cm2 before the artificial dermis was grafted. On day 5 after grafting, the graft and surrounding tissue were examined histologically for angiogenesis and fibroplasia in the dermis and wound bed with hematoxylin eosin stain, VEGF antibody stain, Masson’s trichrome stain and India ink stain. Evans blue perfusion methodwas also used for detecting the angiogenesis quantitatively.Results In the fibroblast group, the angiogenesis of graft bed was significantly accelerated onday 5 after grafting; the numbers of the newly formed capillaries were 9.64±2.36/HP in the fibroblast group and 3.88±1.62/HP in the control group (P<0.05). And on day 10 after grafting the angiogenesis was accelerated not only in graft bed but also in the artificial dermis when compared with control group, the newly formed capillaries network was clearly observed in the artificial dermis. Otherwise, the synthesis of collagen was increased in the dermis on day 10 after grafting in the fibroblast group when compared with control group. The immunoreactivity of VEGF antibody in the fibroblast group also showed a ber expression than that in control group on day 5 after grafting, the numbers of positive cells were 46.04±8.90/HP in the fibroblast group and 30.08±7.76/HP in the control group(P<0.05).Conclusion Transplantation of cryopreserved dermal fibroblasts while artificial dermis grafting can accelerate the angiogenesis and fibroplasia in the artificial dermis and graft bed, thereby accelerate the formation of dermallike tissue in the artificial dermis.
Objective To compare the efficiency of epidermis cell culture between big graft method and small strip method. Methods The big graft method was to cut the skin tissue reticularly from dermis layer while the epidermis were not cut off. After it was digested fully in trypsin, theepidermis was separated from skin and was used to culture epidermal cells. The small strip method was routine. The time to cut the skin and to separate the epidermis was recorded, and the number and quality of cells were compared between two methods. Results It took 8-10 minutes to cut an area of 5 cm2 skin into small strips and 1-2 minutes into big grafts. It took 10-15 minutes to separate the epidermis from the same area skin by small strip method and 2 minutes by big graft method. The cells showed better vigor and its number was more by big grafts than by small strips.The chance of fibroblast contamination was reduced obviously. Conclusion The big graft method is simpler than the small strip method and can culture more epidermis cells with less chance of fibroblast contamination.
Objective To investigate the influence of lipopolysaccharide(LPS) on the proliferation and collagen synthesis of normal human skin fibroblasts so as to elucidate its relation with skin wound healing. Methods Fibroblasts wereisolated and cultured in vitro, and then exposed to different doses of LPS(0.005, 0.010, 0.050, 0.100, 0.500, and 1.000 μg/ml) from E.coli055∶B5 respectively. Then the absorbance (A) value of fibroblasts was determined with the colorirneteric thiazolylblue (MTT) assay, and the cell number was counted under inverted phase contrast microscope from the 1st day to the 9th day after LPS administration, and collagen synthesis of fibroblasts in culture medium was measured with the method of pepsin digestion after incorporation of 3Hproline into stable, single-layered, confluent fibroblasts at 7 days after LPS administration. Results Compared with control group, A value increased with the increasing concentration of LPS (0.005 μg/ml 0.500 μg/ml) and LPS of 0.100 μg/mlgroup had the best effect. The difference was remarkable from the 5th day to the 9th day(P<0.05). A value decreased when challenged with the LPS of 1.000 μg/ml and the difference was remarkable from the 3rd day to the 9th day(P<0.05). Cell number increased with theadministration of LPS of different concentrations (0.005 μg/ml 0.500 μg/ml) and LPS of 0.100 μg/mlgroup had the best effect. The difference was remarkable from the 1st day to the 6th day(P<0.05). Cell number decreased remarkably when challenged with LPS of 1.000 μg/ml and the difference was remarkable from the 2nd day to the 9th day(P<0.05). Collagen synthesis increased when challenged with LPS of different concentrations (0.005 μg/ml 0.500 μg/ml) and the 0.100 μg/ml group had the best effect. However, when the dose of LPS reached 1.000 μg/ml, it inhibited collagensynthesis. Conclusion LPS could promote the proliferation andcollagen synthesis of fibroblasts within a certain range of low doses, but over-high dose ofLPS might inhibit the proliferation and collagen synthesis of fibroblasts, suggesting that LPS of certain concentrations might contribute to wound healing, while excessive LPS has negative effect on wound healing.
ObjectiveTo investigate the effect of basic fibroblast growth factor (bFGF) on expression of apoptosisrelated genes in retinal ischemiareperfusion injury (RIRI).MethodsTwentyeight rats were divided into normal, ischemia and treatment group randomly; and the latter two groups were subdivided into 6 subgroups according to different time points: 1 hour, 6, 12, 24, 48, and 72 hours after reperfusion. The rats′ model of experimental RIRI was established. After intravitreously injected with bFGF (treatment group) or balanced saline solution (ischemia group), the expressions of wide type p53 (WTp53),c-fos, and c-jun in each subgroups were detected by streptavidinbiotin complex of immunohistochemistry.ResultIn ischemia group, the expression of WTp53,c-fos and c-jun was found 6 hours after reperfusion, reached the peak at the 24th hour after reperfusion, kept expressing bly at the 48th hour, and decreased obviously at the 72nd hour. In treatment group, the rule of changes of expression of WTp53, c-fos and c-jun was similar to which in ischemia group, except that the expression amount was obvious decreased. There was statistical significance of the expression of WTp53, c-fos and c-jun between the ischemia and treatment group 6-48 hours after reperfusion (P<0.05). ConclusionThe expression of WTp53,c-fos,and c-jun in retinal ganglion cell layer and inner nuclear layer may increase led by RIRI;WTp53,c-fos,and c-jun may be involved in the generant mechanisms of RIRI by playing parts in apoptosis;bFGF can inhibit the increase of expression of WTp53,c-fos,and c-jun in RIRI.Thus, which may has therapeutic effect on RIRI.( Chin J Ocul Fundus Dis,2005,21:310-313)
Objective To investigate a change in the differentiation and biological function of the cultured rat fibroblast (FB) transfected by the myoblast determining gene (MyoD) and the connexin 43 (Cx43) gene and to explore the possible mechanism of the MyoD and Cx43 genes on treatment of ischemic heart disease (IHD). Methods The gene cloning technology was used to construct the eukaryotic expressed plasmid vector pLenti6/V5-DEST-MyoD and pLenti6/V5DEST-Cx43 in which MyoD cDNA or Cx43 cDNA was inserted. The RFL-6 FB cells were transfected with exogenetic MyoD cDNA or Cx43 cDNA via lipofectamine, followed by the Blasticidin (50 μg/ml) selection, according to the lentiviral expression system (ViraPower) protocol. The expression and the biological functions of MyoD and Cx43 in the transfectants were testified by RT-PCR, Western blot, and molecular and immunocytochemical methods. The mophological structure changes of the cells were observed under microscope before and after the transfection. Results The expression of MyoD and Cx43 was detected in the MyoD and Cx43 genes transfected FB with RT-PCR and Western blot. The immunocytochemical methods indicated the expressionsof the MyoD and Cx43 genes, while desmin and αactin were found in these cells. The myotubes were found from the cultures incubated a week in the differentiation medium, in which the transfected cells had a characteristic of the filamentsin their cytoplasm and showed a myoblast morphology. Conclusion MyoD cDNA can induce the cultured FB to differentiate into the myoblasts and Cx43 cDNA can enhance the gap junctional intercellular communication between the cell and the cell. Thus, a further experimental foundation for the therapy of IHD can be provided.
OBJECTIVE: To fabricate artificial human skin with the tissue engineering methods. METHODS: The artificial epidermis and dermis were fabricated based on the successful achievements of culturing human keratinocytes(Kc) and fibroblasts (Fb) as well as fabrication of collagen lattice. It included: 1. Culture of epidermal keratinocytes and dermal fibroblasts: Kc isolated from adult foreskin by digestion of trypsin-dispase. Followed by comparison from aspects of proliferation, differentiation of the Kc, overgrowth of Fb and cost-benefits. 2. Fabrication of extracellular matrix sponge: collagen was extracted from skin by limited pepsin digestion, purified with primary and step salt fraction, and identified by SDS-PAGE. The matrix lattice was fabricated by freeze-dryer and cross-linked with glutaraldehyde, in which the collagen appeared white, fibrous, connected and formed pores with average dimension of 180 to 260 microns. 3. Fabrication artificial human skin: The artificial skin was fabricated by plating subcultured Kc and Fb separately into the lattice with certain cell density, cultured for one week or so under culture medium, then changed to air-liquid interface, and cultured for intervals. RESULTS: The artificial skin was composed of dermis and epidermis under light microscope. Epidermis of the skin consisted of Kc at various proliferation and differentiation stages, which proliferated and differentiated into basal cell layer, prickle cell layer, granular layer, and cornified layer. Conifilament not only increased in number, but also gathered into bundles. Keratohyalin granules at different development stages increased and became typical. The kinetic process of biochemistry of the skin was coincide with the changes on morphology. CONCLUSION: Tissue engineered skin equivalent has potential prospects in application of repairing skin defect with advantages of safe, effective and practical alternatives.
In order to investigate the compatibility and growth between the tendon cell or fibroblast of rabbit and artificial materials, the combined-culture of the two cells with the carbon fiber, terylene and chitin was observed respectively. Results showed as following: in vitro, the compatibility of carbon fiber with these two cells was well, cell-adhesion ability was good as well. Few cells grew on terylene. Chitin inhibited the growth of either cells. No matter the tendon cell or the fibroblast, the amount of cells adhering on the carbon fiber was far more than that on terylene or chitin. When the three materials were interlaced together, the collagen fibers produced by the cells were arranged in direction parallel to the carbon fibers. As the time elapsed, the cells on the carbon fiber distributed evenly and enveloped the material in network-like fashion, this suggested that carbon fiber was a good material for producing living artificial tendon and ligament.