• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "Cell culture Biomaterials" 1 results
        • TISSUE ENGINEERED BONE REGENERATION OF PERIOSTEAL CELLS USINGRECOMBINANT HUMAN BONE MORPHOGENETIC PROTEIN 2 INDUCE

          Objective To investigate bone regeneration of the cell-biomaterial complex using strategies of tissue engineering based on cells.Methods Hydroxyapatite/collagen (HAC) sandwich composite was produced to mimic the natural extracellular matrix of bone, with type Ⅰ collagen servingas a template for apatite formation. A three-dimensional ploy-porous scaffoldwas developed by mixing HAC with poly(L-lactic acid) (PLA) using a thermally induced phase separation technique (TIPS). The rabbit periosteal cells were treated with 500 ng/ml of recombinant human bone morphogenetic protein 2(rhBMP-2), followed by seeded into pre-wet HAC-PLA scaffolds. Eighteen 3-month nude mice were implanted subcutaneously cell suspension (groupA, n=6), simple HAC-PLA scaffold (group B, n=6) and cell-biomaterial complex(group C, n=6) respectively.Results Using type Icollagen to template mineralization of calcium and phosphate in solution, we get HAC sandwich composite, mimicking the natural bone both in compositionand microstructure. The three dimensional HAC-PLA scaffold synthesized by TIPShad high porosity up to 90%, with pore size ranging from 50 μm to 300 μm. SEMexamination proved that the scaffold supported the adhesion and proliferation of the periosteal cells. Histology results showed new bone formation 8 weeks after implantation in group C. The surface of group A was smooth without neoplasma. Fibrous tissueinvasion occured in group B and no bone and cartilage formations were observed.Conclusion The constructed tissue engineering bone has emerged as another promising alternative for bone repair.

          Release date:2016-09-01 09:29 Export PDF Favorites Scan
        1 pages Previous 1 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜