Objective To observe the efficacy and safety of subretinal injection of Aflibercept for the treatment of refractory or recurrent polypoidal choroidal vasculopathy (PCV). MethodsA prospective clinical research. From January to June 2022, 18 patients of 18 eyes with PCV diagnosed in The Affiliated Eye Hospital of Nanchang University were included in the study. All patients underwent best corrected visual acuity (BCVA), indocyanine green angiography and optical coherence tomography (OCT). The BCVA examination was performed using the international standard visual acuity chart, which was converted to logarithm of the minimum angle of resolution (logMAR) visual acuity during statistics. The large choroidal vessel thickness (LVCT), central retinal thickness (CRT), sub-foveal choroidal thickness (SFCT) and retinal pigment epithelium detachment (PED) height were measured by enhanced depth imaging technique of OCT. The choroidal vascular index (CVI) was calculated. There were 18 patients of 18 eyes, 11 males of 11 eyes and 7 females of 7 eyes. The age was (64.22±3.86) years old. The disease duration was (5.22±1.80) years. The patient had received intravitreal injection of anti-vascular endothelial growth factor (VEGF) drugs for (7.72±1.36) times. The logMAR BCVA of the affected eyes was 1.28±0.25. The SFCT, CRT, LVCT, PED height were (436.56±9.80), (432.44±44.29), (283.78±27.10), (342.44±50.18) μm, respectively, and CVI was 0.65±0.01. All eyes were treated with a single subretinal injection of 40 mg/ml Aflibercept 0.05 ml (including Aflibercept 2.0 mg). According to the results of OCT and BCVA after treatment, the lesions were divided into active type and static type. The active lesions were treated with intravitreal injection of Aflibercept at the same dose as before. Quiescent lesions were followed up. Examinations were performed 1-3, 6, 9 and 12 months after treatment using the same equipment and methods before treatment. The BCVA, LVCT, CRT, SFCT, PED height, CVI, interretinal or subretinal fluid, lesion regression rate, injection times, and complications during and after treatment were observed. The BCVA, SFCT, CRT, LVCT, PED height and CVI before and after treatment were compared by repeated measures analysis of variance. ResultsEighteen eyes received subretinal and/or intravitreal injection of Aflibercept (1.61±0.85) times (1-4 times). At the last follow-up, the polypoid lesions regressed in 4 eyes and PED disappeared in 1 eye. Compared with before treatment, BCVA (F=50.298) gradually increased, CRT (F=25.220), PED height (F=144.16), SFCT (F=69.77), LVCT (F=136.69), CVI (F=72.70) gradually decreased after treatment. The differences were statistically significant (P<0.001). Macular hole occurred in 1 eye after treatment, and the hole closed spontaneously 3 months after treatment. No serious complications such as retinal tear, retinal detachment, endophthalmitis and vitreous hemorrhage occurred during and after treatment. ConclusionSubretinal injection of Aflibercept is safe and effective in the treatment of refractory PCV.
ObjectiveTo compare and analyze the application of anti-vascular endothelial growth factor (VEGF) drugs for intravitreal injection in the real world before and after the establishment of one-stop intravitreal injection center, as well as the advantages and disadvantages of different management modes. MethodsA retrospective clinical study. A total of 4 015 patients (4 659 eyes) who received anti-VEGF drugs for ocular fundus diseases at the Tianjin Medical University Eye Hospital from July, 2018 to June, 2022 were included in the study. There were 2 146 males and 1 869 females. The ocular fundus diseases in this study were as follows: 1 090 eyes of 968 patients with wet age-related macular degeneration (wAMD); 855 eyes of 654 patients with diabetic macular edema (DME); 1 158 eyes of 980 patients with diabetic retinopathy (DR); 930 eyes of 916 patients with macular edema secondary to retinal vein occlusion (RVO-ME). A total of 294 eyes of 275 patients with choroidal neovascularization secondary to pathological myopia (PM-CNV); 332 eyes of 222 patients with other fundus diseases. A total of 13 796 anti-VEGF needles were injected. A total of 1 252 patients (1 403 eyes) from July 2018 to June 2020 were regarded as the control group. From July 2020 to June 2022, 2 763 patients (3 256 eyes) who received anti-VEGF treatment in the intravitreal injection center were regarded as the observation group. The total number of intravitreal injection needles, the distribution of anti-VEGF therapy in each disease according to disease classification, the proportion of patients who chose the 3+ on-demand treatment (PRN) regimen and the distribution of clinical application of different anti-VEGF drugs were compared between the control group and the observation group. The waiting time and medical experience of patients were investigated by questionnaire. χ2 test was used to compare the count data between the two groups, and t test was used to compare the measurement data. ResultsAmong the 13 796 anti-VEGF injections in 4 659 eyes, the total number of anti-VEGF drugs used in the control and observation groups were 4 762 and 9 034, respectively, with an average of (3.39±3.78) and (2.78±2.27) injections per eye (t=6.900, P<0.001), respectively. In the control and observation groups, a total of 1 728 and 2 705 injections of anti-VEGF drugs were used for wAMD with an average of (5.14±4.56) and (3.59±2.45) injections per eye, respectively; a total of 982 and 2 038 injections of anti-VEGF drugs were used for DME with an average of (4.36±4.91) and (3.24±2.77) needles per eye, respectively. Additionally, a total of 942 and 2 179 injections of anti-VEGF drugs were injected for RVO-ME with an average of (3.98±3.71) and (3.14±2.15) injections per eye, respectively; a total of 291 and 615 injections of anti-VEGF drugs were injected for PM-CNV with an average of (3.31±2.63) and (2.99±1.69) injections per eye, respectively. A total of 683 and 1 029 injections of anti-VEGF drugs were injected for DR with an average of (1.60±1.26) and (1.41±1.05) injections per eye, respectively. The clinical application and implementation of "3+PRN" treatment were as follows: 223 (66.4%, 223/336) and 431 eyes (57.2%, 431/754) in the wAMD (χ2=8.210, P=0.004), 75 (33.3%, 75/225) and 236 (37.5%, 236/630) eyes in the DME (χ2=1.220, P>0.05), and 97 (40.9%, 97/237) and 355 eyes (51.2%, 355/693) in the RVO-ME (χ2=7.498, P=0.006), 39 (44.3%, 39/88) and 111 eyes (53.9%, 111/206) in the PM-CNV ( χ2=2.258, P>0.05), respectively. In addition, the results of the questionnaire survey showed that there were significant differences between the control and observation groups regarding the time of appointment waiting for surgery (t=1.340), time from admission to entering the operating room on the day of injection (t=2.780), time from completing preoperative treatment preparation to waiting for entering the operating room (t=8.390), and time from admission to discharge (t=6.060) (P<0.05). ConclusionsThe establishment of a one-stop intravitreal injection mode greatly improved work efficiency and increased the number of injections. At the same time, the compliance, waiting time, and overall medical experience of patients significantly improved under centralized management.
Objective To compare the outcomes of ranibizumab and conbercept adjunct for pars plana vitrectomy (PPV) in the treatment of proliferative diabetic retinopathy (PDR). MethodsA prospective randomized case-control study. From June 2022 to December 2023, 90 cases (90 eyes) of PDR patients diagnosed through ophthalmic examination at Department of Ophthalmology of Gansu Provincial Hospital were included in the study. All patients underwent the best corrected visual acuity (BCVA), intraocular pressure, B-mode ultrasound, and optical coherence tomography (OCT) examinations. The central macular thickness (CMT) was measured using an OCT instrument. The patients were randomly divided into a intravitreal injection of ranibizumab group (monoclonal-antibody group) and a intravitreal injection of conbercept group (fusion-protein group) using a random number table method, with 45 cases (45 eyes) in each group. Two groups of patients were intravitreal injected with 10 mg/ml ranibizumab or conbercept 0.05 ml, respectively. A standard 23G PPV was performed through the flat part of the ciliary body 3-7 days after intravitreal injection. Relevant examinations were performed using the same equipments and methods as before surgery at postoperative 1 week, 1, 3, 6, and 12 months. The PPV time, intraoperative use of intraocular electrocoagulation, incidence of iatrogenic retinal breaks, and sterile air or silicone oil tamponade rate in the vitreous cavity, the postoperative changes of BCVA and CMT, and incidence of complications were compared between two groups. Independent sample t test was used for inter group comparison. ResultsThe intraoperative utilization rate of intraocular electrocoagulation in the monoclonal-antibody group was higher than that in the fusion-protein group, and the difference was statistically significant (χ2=3.876, P<0.05). There were no statistically significant differences in the PPV time (t=0.152), intraoperative bleeding rate (χ2=0.800), incidence of iatrogenic retinal breaks (χ2=1.975), and sterile air and silicone oil tamponade rate in the vitreous cavity (χ2=1.607, 1.553) between the two groups (P>0.05). There were no statistically significant differences in early and late postoperative vitreous hemorrhage (χ2=1.235, 2.355), and re-PPV (χ2=2.355) between two groups (P>0.05). The BCVA of the fusion-protein group was significantly better than that of the monoclonal-antibody group at postoperative 3 months, and the difference was statistically significant (t=2.428, P<0.05). The CMT of the fusion-protein group was lower than that in the monoclonal-antibody group at postoperative 1 week, and the difference was statistically significant (t=2.739, P<0.05). None of the patients experienced endophthalmitis, retinal artery occlusion, or severe cardiovascular events after surgery. ConclusionCompared with intravitreal injection of ranibizumab before PPV, intravitreal injection of conbercept before PPV in PDR patients can shorten the surgical time, reduce intraoperative bleeding rate, lower the rate of electrocoagulation and intraocular tamponade, and incidence of iatrogenic retinal breaks, and improve the visual acuity.
ObjectiveTo explore the conversion treatment value of Faricimab in patients with neovascular age-related macular degeneration (nAMD) who had sub-optimal response to anti-vascular endothelial growth factor (VEGF) drug therapy, and to preliminarily evaluate its clinical effect. MethodsA retrospective clinical study. From March 2024 to January 2025, 25 patients (32 eyes) diagnosed with nAMD at Department of Ophthalmology of General Hospital of Central Theater Command were included in the study. All affected eyes were converted to receive Faricimab treatment due to sub-optimal response to previous anti-VEGF drug therapy. The treatment plan is to provide treatment as needed after the first injection based on the follow-up results. The best corrected visual acuity (BCVA) and swept-source optical coherence tomography angiography (SS-OCTA) were evaluated. BCVA examination was conducted using the Snellen visual acuity chart and converted to the logarithm of the minimum angle of resolutionn (logMAR) visual acuity for statistical analysis. The SS-OCTA system automatically calculates indicators such as central retinal thickness (CRT), choroidal neovascularization surface area (CSA), and choroidal neovascularization flow area (CFA). The main observations were made on the changes of BCVA, CSA, CFA, CRT and adverse reactions at 1, 3 and 6 months after treatment. A mixed linear model was adopted to compare the differences between each index and the baseline. ResultsAmong the 25 patients, 20 were male (80.0%, 20/25) and 5 were female (20.0%, 5/25). Age was (66.6±11.2) years old. The disease course was (41.2±36.4) months. Previously received anti-VEGF drug treatment (20.5±21.6) times, involving 2.2 types of drugs. Among the 32 eyes, 16 (50.0%), 11 (34.4%), and 7 (21.9%) eyes had subretinal fluid, intraretinal fluid, and both coexisting, respectively. At baseline, the logMAR BCVA of the affected eye was 0.67±0.41, the CSA and CFA were (7.46±6.27) and (3.26±2.59) mm2, respectively, and the CRT was (380.75±147.56) μm. At 1, 3, and 6 months after switching to Faricimab treatment, logMAR BCVA improved to 0.57±0.42, 0.55±0.41, and 0.50±0.35, respectively. The corresponding CSA were (6.36±6.10), (6.44±6.12), and (6.44±5.96) mm2. The corresponding CFA values were (2.79±2.50), (2.35±2.25), and (2.59±2.35) mm2. The corresponding CRT were (330.64±147.56), (329.44±130.73), (340.05±144.56) μm. Compared with the baseline, BCVA significantly improved at each time point after treatment, and CSA and CFA significantly decreased. The differences were statistically significant (P<0.05). At 1 and 3 months after treatment, CRT was significantly lower than the baseline, and the difference was statistically significant (P=0.005, 0.025). During the follow-up period, the intraocular pressure of all affected eyes remained normal, and no serious adverse events such as intraocular infection occurred. ConclusionFor nAMD patients with poor response to anti-VEGF drug treatment, switching to Faricimab treatment can effectively improve the BCVA and anatomical structure (including CSA, CFA and CRT) of the affected eyes, and has good safety.
Retinal vein occlusion (RVO) is a closely related disease of ophthalmology and systemic diseases. The Expert consensus on clinical diagnosis and treatment path of retinal vein occlusion in China (consensus) emphasizes that etiological diagnosis and treatment should be paid primary attention to, and etiological exploration should be placed in an important position in the diagnosis and treatment path. In addition to etiological treatment, the consensus emphasizes that clinical attention should be paid to the management of anterior segment neovascularization, neovascular glaucoma and macular edema. Especially for patients with short course of central retinal vein occlusion, the occurrence of 100-day glaucoma should be vigilant, and active anti-vascular endothelial growth factor (VEGF) drugs, laser photocoagulation and intraocular pressure treatment should be taken. For the treatment of macular edema, the consensus points out that anti-VEGF drugs and intraocular glucocorticoid sustained-release agents are effective, but the latter should be used cautiously to avoid problems such as high intraocular pressure glaucoma and accelerated cataract formation. For deficient RVO, the consensus defines its concept, defines the time point of treatment when combined with macular edema, and clarifies the applicable conditions of laser therapy.
Diabetic macular edema (DME) is the most threatening complication of diabetic retinopathy that affects visual function, which is characterized by intractability and recurrent attacks. Currently, the clinical routine treatments for DME mainly include intravitreal injection, grid laser photocoagulation in the macular area, subthreshold micropulse laser, periocular corticosteroid injection, and vitrectomy. Although conventional treatments are effective for some patients, persistent, refractory, and recurrent DME remains a clinical challenge that needs to be urgently addressed. In recent years, clinical studies have found that certain combination therapies are superior to monotherapy, which can not only restore the anatomical structure of the macular area and effectively reduce macular edema but also improve visual function to some extent while reducing the number of treatments and the overall cost. This makes up for the shortcomings of single treatment modalities and is highly anticipated in the clinical setting. However, the application of combination therapy in clinical practice is relatively short, and its safety and long-term effectiveness need further exploration. Currently, new drugs, new formulations, and new therapeutic targets are still under research and development to address different mechanisms of DME occurrence and development, such as anti-vascular endothelial growth factor agents designed to anchor repetitive sequence proteins with stronger inhibition of vascular leakage, multiple growth factor inhibitors, anti-inflammatory agents, and stem cell therapy. With the continuous improvement of the combination application of existing drugs and treatments and the development of new drugs and treatment technologies, personalized treatment for DME will become possible.
Vascular endothelial growth factor (VEGF) is a multifunctional factor that promotes blood vessel formation and increases vascular permeability. Its abnormal elevation plays a key role in common retinal diseases such as wet age-related macular degeneration and diabetic macular edema. Anti-VEGF therapy can inhibit angiogenesis, reduce vascular leakage and edema, thereby delaying disease progression and stabilizing or improving vision. Currently, the clinical application of anti-VEGF drugs has achieved satisfactory therapeutic effects, but there are also issues such as high injection frequency, heavy economy burden, potential systemic side effects, and non-responsiveness. To address these issues, current research and development mainly aim on biosimilars, multi-target drugs, drug delivery systems, oral anti-VEGF drugs, and gene therapy. Some drugs have shown great potential and are expected to turn over a new leaf for anti-VEGF treatment in ophthalmology.
Retinopathy of prematurity (ROP) is a retinal vascular disease in preterm or low birth weight infants and a leading cause of childhood blindness. Anti-vascular endothelial growth factor (VEGF) therapy offers advantages such as minimal invasiveness and convenient intervention; however, it carries a relatively high risk of disease reactivation, necessitating long-term follow-up due to the potential for severe outcomes. Studies indicate that post-anti-VEGF reactivation rates vary regionally and are related with birth status, ROP severity, and the specific anti-VEGF agent used. Most reactivations occur 6-16 weeks after initial treatment, at a postmenstrual age of 37-60 weeks. Reactivated lesions often develop at the original ridge or the junction of vascularized and avascular retina, and may present with dilation and tortuosity of the posterior retinal vessels, peripheral vascular leakage, neovascularization, or retinal detachment. Fundus fluorescein angiography may reveal Plus disease, posterior arterial tortuosity, abnormal nondichotomous retinal vessel branching at the junction of vascularized and avascular retina, irregular circumferential vessels, vasoobliteration with capillary nonperfusion, neovascularization, and fluorescein leakage. The choice of retreatment (such as retinal laser photocoagulation, intravitreal anti-VEGF injection, or vitrectomy) should be decided by the timing and severity of reactivation, along with prognostic considerations. It is recommended to establish a standardized management protocol for reactivation after anti-VEGF treatment in ROP to enable early detection and intervention, thereby preventing severe visual impairment. Future studies should focus on the mechanisms underlying ROP reactivation, differences in reactivation rates and timing among various anti-VEGF agents, predictive models for reactivation risk, and long-term management of reactivated disease.
Diabetic retinopathy (DR) is the leading cause of visual impairment worldwide. Severe non-proliferative diabetic retinopathy, diabetic macular edema, and proliferative DR (PDR) are defined as vision-threatening DR (VTDR). In the context of managing systemic disease, the primary treatments for VTDR include panretinal photocoagulation (PRP), intravitreal injection of anti-vascular endothelial growth factor (VEGF) drugs or dexamethasone sustained release agents, and microincision vitreous surgery. Although these therapies are already widely used in clinical practice, there is still much debate about the optimal timing and method of their application, especially in the pursuit of optimal efficacy, cost-effectiveness, patient compliance, and the reduction of frequent ongoing treatments. There is no consensus on the best treatment for PDR. Determining the specific criteria for each therapy indication is one of the key considerations. In addition, consideration should be given to the priority between PRP and intravitreal injection, as well as to compare the relative effectiveness of anti-VEGF agents with PRP. Early surgical intervention is not always a necessary option for PDR patients with vitreous hemorrhage and fibrovascular membranes. Combining different therapies to optimize treatment strategies is also an important topic. These issues address several points of contention in best practice guidelines that need to be addressed through more in-depth research to provide better guidance for clinical practice and ultimately improve patient outcomes.
Diabetic retinopathy (DR) has become an important cause of irreversible vision loss worldwide. Intravitreal injection of anti-vascular endothelial growth factor (VEGF) drugs is an important method to the treatment of DR. However, the current anti-VEGF treatment regimen is not uniform. Anti-VEGF injection was preferred and then delayed combined with laser had better prognostic effect. The best time for operation was 5-7 days after injection of anti-VEGF drugs. Pars plana vitrectomy, intraoperative and postoperative on-demand anti-VEGF drugs injection can significantly improve patient prognosis and reduce complications, but further research is needed to strike a balance between the economic burden and the number of injections. Various anti-VEGF drugs have their own advantages for different diseases and should be selected according to the characteristics of the diseases and drugs. Anti-VEGF drugs combined with antioxidants may further improve DR outcomes. Future studies should pay more attention to the optimization and personalization of anti-VEGF drugs application programs to meet the therapeutic needs of different patients.