• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Author
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Author "AI Na" 1 results
        • Research on classification of brain functional network features during mental fatigue

          This study is aimed to investigate objective indicators of mental fatigue evaluation to improve the accuracy of mental fatigue evaluation. Mental fatigue was induced by a sustained cognitive task. The brain functional networks in two states (normal state and mental fatigue state) were constructed based on electroencephalogram (EEG) data. This study used complex network theory to calculate and analyze nodal characteristics parameters (degree, betweenness centrality, clustering coefficient and average path length of node), and served them as the classification features of support vector machine (SVM). Parameters of the SVM model were optimized by gird search based on 6-fold cross validation. Then, the subjects were classified. The results show that characteristic parameters of node of brain function networks can be divided into normal state and mental fatigue state, which can be used in the objective evaluation of mental fatigue state.

          Release date:2018-04-16 09:57 Export PDF Favorites Scan
        1 pages Previous 1 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜