• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. 華西醫學期刊出版社
        作者
        • 標題
        • 作者
        • 關鍵詞
        • 摘要
        高級搜索
        高級搜索

        搜索

        找到 作者 包含"辛在海" 1條結果
        • 基于深度可分離稠密網絡的新型冠狀病毒肺炎 X 線圖像檢測方法研究

          新型冠狀病毒肺炎肆虐全球,為了更加快速地診斷新型冠狀病毒肺炎(COVID-19),本文提出一種深度可分離稠密網絡 DWSDenseNet,以 2 905 例 COVID-19 胸部 X 線平片影像作為實驗數據集,在網絡訓練前使用限制對比度自適應直方圖均衡化(CLAHE)算法對圖像進行預處理,增強圖像的對比度,將預處理之后的圖像放入訓練網絡中,采用 Leaky ReLU 作為激活函數,調整參數以達到最優。本文引入 VGG16、ResNet18、ResNet34、DenseNet121 和 SDenseNet 模型進行比較,所提出的網絡在三分類實驗中相較于 ResNet34 在準確率、靈敏度和特異性上分別提高了 2.0%、2.3%、1.5%。相對于改進前的 SDenseNet 網絡,本文模型的參數量減少了 43.9%,但分類效果并未下降。通過對比實驗可以發現,本文所提出的深度可分離稠密網絡對 COVID-19 胸部 X 線平片影像數據集具有良好的分類效果,在保證準確率的情況下,深度可分離卷積能夠有效地降低模型參數量。

          發表時間:2020-10-20 05:56 導出 下載 收藏 掃碼
        共1頁 上一頁 1 下一頁

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜