為解決用傳統粒子群算法估計磁共振(MR)圖像偏移場會陷入局部最優的問題,本文提出了一種自適應權重粒子群算法估計MR圖像的偏移場。針對傳統粒子群算法的缺陷,設計一個衡量早熟收斂程度的指標,根據此指標來自適應地調整慣性權重,確保粒子群有效地進行全局尋優,避免陷入局部最優。本文利用Legendre多項式來擬合偏移場,多項式參數利用本文提出的算法進行尋優,最后對MR圖像的偏移場進行估計和矯正。將本文算法與改進的熵最小方法進行對比分析,本文矯正后圖像熵值更小,對偏移場估計更準確,將矯正后的圖像進行分割,分割精度提高將近10%。研究結果初步說明,本算法可應用于MR圖像偏移場的矯正。
針對人體下肢不同步態過程的個體差異和行走過程中步幅隨機變化等問題,本文提出一種利用運動姿態信號進行步態識別與預測的方法。研究采用基于免疫粒子群算法(IPSO)優化門控循環單元(GRU)網絡算法,建立以人體姿態變化數據為輸入,以下一階段姿態變化數據及準確率為輸出的網絡模型,以期實現對人體姿態變化的預測。本文首先明確概述IPSO優化GRU算法的過程,采集多名受試者分別執行平地行走、蹲起、坐姿腿屈伸等動作的人體姿態變化數據,通過對比分析IPSO優化的循環神經網絡(RNN)、長短期記憶網絡(LSTM)、GRU網絡識別與預測情況,以驗證所建模型的有效性。試驗結果顯示,優化后的算法可較好預測人體姿態變化,其中平地行走和蹲起動作的均方根誤差(RMSE)可精確到10?3,坐姿腿屈伸的RMSE可精確到10?2;各種動作的R2值均可達0.966以上。以上研究結果表明,優化后的算法可應用于實現康復治療中人體步態運動評價和步態趨勢預測、假肢和下肢康復設備設計等研究,對今后提高患者肢體功能、活動水平和生活獨立能力的研究提供參考。
現有的近紅外無創血糖檢測模型研究大多數關注的是近紅外吸光度與血糖濃度之間的關系,但沒有考慮人體生理狀態對血糖濃度的影響。為了提升血糖預測模型性能,本文采用了粒子群優化算法(PSO)對反向傳播(BP)神經網絡的結構參數進行訓練,并引入了收縮壓、脈率、體溫以及1 550 nm吸光度作為血糖濃度預測模型的輸入變量,采用BP神經網絡作為預測模型。為解決傳統BP神經網絡容易陷入局部最優的問題,本文提出了一種基于PSO-BP的混合模型。結果表明,訓練得到的PSO-BP模型預測效果優于傳統的BP神經網絡。十折交叉驗證預測均方根誤差和相關系數分別為0.95 mmol/L和0.74;克拉克誤差網格分析結果表明,模型預測結果落入A區域的比例為84.39%,落入B區域的比例為15.61%,均滿足臨床要求。該模型可以快速地測量血糖濃度,且具相對較高的精度。