• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "睡眠分期" 15 results
        • Analysis of Sleep Electroencephalograph Signal Based on Detrended Cross-Correlation

          The quality of sleep has a great relationship with health and working efficiency. The result of sleep stage classification is an important indicator to measure the quality of sleep, and it is also an important way to diagnose and treat sleep disorders. In this paper, the method of detrended cross-correlation analysis (DCCA) was used to analyze sleep stage classification, sleep electroencephalograph signals, which were extracted from the MIT-BIH Polysomnographic Database randomly. The results showed that the average DCCA exponent of the awake period is smaller than that of the first stage of non-rapid eye movement (NREM) sleeps. It is well concluded that the method of studying the sleep electroencephalograph with this method is of great significance to improve the quality of sleep, to diagnose and to treat sleep disorders.

          Release date: Export PDF Favorites Scan
        • Multi-modal physiological time-frequency feature extraction network for accurate sleep stage classification

          Sleep stage classification is essential for clinical disease diagnosis and sleep quality assessment. Most of the existing methods for sleep stage classification are based on single-channel or single-modal signal, and extract features using a single-branch, deep convolutional network, which not only hinders the capture of the diversity features related to sleep and increase the computational cost, but also has a certain impact on the accuracy of sleep stage classification. To solve this problem, this paper proposes an end-to-end multi-modal physiological time-frequency feature extraction network (MTFF-Net) for accurate sleep stage classification. First, multi-modal physiological signal containing electroencephalogram (EEG), electrocardiogram (ECG), electrooculogram (EOG) and electromyogram (EMG) are converted into two-dimensional time-frequency images containing time-frequency features by using short time Fourier transform (STFT). Then, the time-frequency feature extraction network combining multi-scale EEG compact convolution network (Ms-EEGNet) and bidirectional gated recurrent units (Bi-GRU) network is used to obtain multi-scale spectral features related to sleep feature waveforms and time series features related to sleep stage transition. According to the American Academy of Sleep Medicine (AASM) EEG sleep stage classification criterion, the model achieved 84.3% accuracy in the five-classification task on the third subgroup of the Institute of Systems and Robotics of the University of Coimbra Sleep Dataset (ISRUC-S3), with 83.1% macro F1 score value and 79.8% Cohen’s Kappa coefficient. The experimental results show that the proposed model achieves higher classification accuracy and promotes the application of deep learning algorithms in assisting clinical decision-making.

          Release date:2024-04-24 09:40 Export PDF Favorites Scan
        • A hybrid attention temporal sequential network for sleep stage classification

          Sleep stage classification is a necessary fundamental method for the diagnosis of sleep diseases, which has attracted extensive attention in recent years. Traditional methods for sleep stage classification, such as manual marking methods and machine learning algorithms, have the limitations of low efficiency and defective generalization. Recently, deep neural networks have shown improved results by the capability of learning complex pattern in the sleep data. However, these models ignore the intra-temporal sequential information and the correlation among all channels in each segment of the sleep data. To solve these problems, a hybrid attention temporal sequential network model is proposed in this paper, choosing recurrent neural network to replace traditional convolutional neural network, and extracting temporal features of polysomnography from the perspective of time. Furthermore, intra-temporal attention mechanism and channel attention mechanism are adopted to achieve the fusion of the intra-temporal representation and the fusion of channel-correlated representation. And then, based on recurrent neural network and inter-temporal attention mechanism, this model further realized the fusion of inter-temporal contextual representation. Finally, the end-to-end automatic sleep stage classification is accomplished according to the above hybrid representation. This paper evaluates the proposed model based on two public benchmark sleep datasets downloaded from open-source website, which include a number of polysomnography. Experimental results show that the proposed model could achieve better performance compared with ten state-of-the-art baselines. The overall accuracy of sleep stage classification could reach 0.801, 0.801 and 0.717, respectively. Meanwhile, the macro average F1-scores of the proposed model could reach 0.752, 0.728 and 0.700. All experimental results could demonstrate the effectiveness of the proposed model.

          Release date:2021-06-18 04:50 Export PDF Favorites Scan
        • Automatic sleep staging model based on single channel electroencephalogram signal

          Sleep staging is the basis for solving sleep problems. There’s an upper limit for the classification accuracy of sleep staging models based on single-channel electroencephalogram (EEG) data and features. To address this problem, this paper proposed an automatic sleep staging model that mixes deep convolutional neural network (DCNN) and bi-directional long short-term memory network (BiLSTM). The model used DCNN to automatically learn the time-frequency domain features of EEG signals, and used BiLSTM to extract the temporal features between the data, fully exploiting the feature information contained in the data to improve the accuracy of automatic sleep staging. At the same time, noise reduction techniques and adaptive synthetic sampling were used to reduce the impact of signal noise and unbalanced data sets on model performance. In this paper, experiments were conducted using the Sleep-European Data Format Database Expanded and the Shanghai Mental Health Center Sleep Database, and achieved an overall accuracy rate of 86.9% and 88.9% respectively. When compared with the basic network model, all the experimental results outperformed the basic network, further demonstrating the validity of this paper's model, which can provide a reference for the construction of a home sleep monitoring system based on single-channel EEG signals.

          Release date:2023-08-23 02:45 Export PDF Favorites Scan
        • Research of Electroencephalogram for Sleep Stage Based on Collaborative Representation and Kernel Entropy Component Analysis

          Sleep quality is closely related to human health. It is very important to correctly discriminate the sleep stages for evaluating sleep quality, diagnosing and analyzing the sleep-related disorders. Polysomnography (PSG) signals are commonly used to record and analyze sleep stages. Effective feature extraction and representation is one of the most important steps to improve the performance of sleep stage classification. In this work, a collaborative representation (CR) algorithm was adopted to re-represent the original extracted features from electroencephalogram signal, and then the kernel entropy component analysis (KECA) algorithm was further used to reduce the feature dimension of CR-feature. To evaluate the performance of CR-KECA, we compared the original feature, CR feature and readied CR feature (CR-PCA) after principal component analysis (PCA). The experimental results of sleep stage classification indicated that the CR-KECA method achieved the best performance compared with the original feature, CR feature, and CR-PCA feature with the classification accuracy of 68.74±0.46%, sensitivity of 68.76±0.43% and specificity of 92.19±0.11%. Moreover, CR algorithm had low computational complexity, and the feature dimension after KECA was much smaller, which made CR-KECA algorithm suitable for the analysis of large-scale sleep data.

          Release date: Export PDF Favorites Scan
        • 新生兒腦電圖-睡眠分期及其應用

          近年來新生兒腦電圖(EEG)對于評估腦功能的作用被逐漸認可,并在國內越來越多的醫院開展,一般結果由醫師閱圖后憑經驗主觀判斷,僅依靠定性EEG。而隨著定量EEG研究的增多,依靠客觀數據處理實現新生兒睡眠自動分期得以實現,并可以自動檢出新生兒癲癇發作的時間段,節省人工閱圖時間,輔助醫師對結果做出判斷。EEG-睡眠分期的分析應用廣泛, 可以幫助更準確的識別新生兒腦病,評估新生兒神經功能和腦成熟度,提供一種研究新生兒大腦發育成熟的機制的方法。

          Release date:2017-11-27 02:36 Export PDF Favorites Scan
        • Automatic sleep staging algorithm for stochastic depth residual networks based on transfer learning

          The existing automatic sleep staging algorithms have the problems of too many model parameters and long training time, which in turn results in poor sleep staging efficiency. Using a single channel electroencephalogram (EEG) signal, this paper proposed an automatic sleep staging algorithm for stochastic depth residual networks based on transfer learning (TL-SDResNet). Firstly, a total of 30 single-channel (Fpz-Cz) EEG signals from 16 individuals were selected, and after preserving the effective sleep segments, the raw EEG signals were pre-processed using Butterworth filter and continuous wavelet transform to obtain two-dimensional images containing its time-frequency joint features as the input data for the staging model. Then, a ResNet50 pre-trained model trained on a publicly available dataset, the sleep database extension stored in European data format (Sleep-EDFx) was constructed, using a stochastic depth strategy and modifying the output layer to optimize the model structure. Finally, transfer learning was applied to the human sleep process throughout the night. The algorithm in this paper achieved a model staging accuracy of 87.95% after conducting several experiments. Experiments show that TL-SDResNet50 can accomplish fast training of a small amount of EEG data, and the overall effect is better than other staging algorithms and classical algorithms in recent years, which has certain practical value.

          Release date:2023-06-25 02:49 Export PDF Favorites Scan
        • Study on Sleep Staging Based on Support Vector Machines and Feature Selection in Single Channel Electroencephalogram

          Sleep electroencephalogram (EEG) is an important index in diagnosing sleep disorders and related diseases. Manual sleep staging is time-consuming and often influenced by subjective factors. Existing automatic sleep staging methods have high complexity and a low accuracy rate. A sleep staging method based on support vector machines (SVM) and feature selection using single channel EEG single is proposed in this paper. Thirty-eight features were extracted from the single channel EEG signal. Then based on the feature selection method F-Score's definition, it was extended to multiclass with an added eliminate factor in order to find proper features, which were used as SVM classifier inputs. The eliminate factor was adopted to reduce the negative interaction of features to the result. Research on the F-Score with an added eliminate factor was further accomplished with the data from a standard open source database and the results were compared with none feature selection and standard F-Score feature selection. The results showed that the present method could effectively improve the sleep staging accuracy and reduce the computation time.

          Release date: Export PDF Favorites Scan
        • Research Progress of Automatic Sleep Staging Based on Electroencephalogram Signals

          The research of sleep staging is not only a basis of diagnosing sleep related diseases but also the precondition of evaluating sleep quality, and has important clinical significance. In recent years, the research of automatic sleep staging based on computer has become a hot spot and got some achievements. The basic knowledge of sleep staging and electroencephalogram (EEG) is introduced in this paper. Then, feature extraction and pattern recognition, two key technologies for automatic sleep staging, are discussed in detail. Wavelet transform and Hilbert-Huang transform, two methods for feature extraction, are compared. Artificial neural network and support vector machine (SVM), two methods for pattern recognition are discussed. In the end, the research status of this field is summarized, and development trends of next phase are pointed out.

          Release date: Export PDF Favorites Scan
        • Novel type of unperturbed sleep monitoring scheme under pillow based on hidden Markov model

          Sleep status is an important indicator to evaluate the health status of human beings. In this paper, we proposed a novel type of unperturbed sleep monitoring system under pillow to identify the pattern change of heart rate variability (HRV) through obtained RR interval signal, and to calculate the corresponding sleep stages combined with hidden Markov model (HMM) under the no-perception condition. In order to solve the existing problems of sleep staging based on HMM, ensemble empirical mode decomposition (EEMD) was proposed to eliminate the error caused by the individual differences in HRV and then to calculate the corresponding sleep stages. Ten normal subjects of different age and gender without sleep disorders were selected from Guangzhou Institute of Respirator Diseases for heart rate monitoring. Comparing sleep stage results based on HMM to that of polysomnography (PSG), the experimental results validate that the proposed noninvasive monitoring system can capture the sleep stages S1–S4 with an accuracy more than 60%, and performs superior to that of the existing sleep staging scheme based on HMM.

          Release date:2018-04-16 09:57 Export PDF Favorites Scan
        2 pages Previous 1 2 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜